
Numerical Linear Algebra

Francesco Zanlungo

Contents

1 Linear systems 7

1.1 Introduction . 7

1.2 Informal review of systems of linear equations 8

1.2.1 Trivial cases . 8

1.2.2 Vectors, matrices, determinants 11

1.3 Algorithms to solve linear equation systems 17

1.3.1 What may go wrong? 19

1.4 Review of Linear Algebra: Exercises 23

1.5 Solution of Linear Sistems: Exercises 27

2 Numerical Linear Algebra: Determinant, Inverse and LU

decomposition 29

2.1 Determinant . 29

2.1.1 Exercise . 32

2.2 Inverse . 33

2.2.1 Exercise . 35

2.2.2 Exercise . 37

2.2.3 Exercise . 38

2.3 LU decomposition . 39

2.3.1 Exercise . 40

2.3.2 Exercise . 41

2.3.3 The algorithm . 41

2.3.4 Exercise . 43

2.3.5 Dealing with swaps . 45

2.3.6 Exercise . 46

3 Numerical Linear Algebra: Norms and iterative methods 53

3.1 Introduction . 53

3

CONTENTS

3.2 Metrics and norms . 54

3.2.1 Norm and distance . 54

3.2.2 Norms and distances between vectors 55

3.3 Norms on matrices . 58

3.4 Contraction theorem . 59

3.5 Iterative refinement . 60

3.5.1 Exercise . 62

3.5.2 Exercise . 63

3.6 Iterative methods . 63

3.6.1 Jacobi method . 63

3.6.2 Gauss-Seidel method and SOR 65

3.6.3 Exercise . 65

3.6.4 Exercise . 67

4 Eigenvalues and the like 71

4.1 Egeinvalues and Eigenvectors: definition 71

4.1.1 Exercise . 71

4.1.2 The importance of complex numbers 72

4.2 Scalar (inner) product . 73

4.2.1 Geometrical meaning 73

4.2.2 Formal definition . 75

4.2.3 Proof that an inner product defines a norm 76

4.3 Adjoint and transpose . 76

4.4 Orthogonal matrix and change of basis 78

4.5 Symmetric matrices . 79

4.5.1 Matrix diagonalisation 80

4.5.2 Example . 81

4.5.3 Determinant and trace of symmetric matrices 81

4.6 Power method to find numerically eigenvalues and vectors . . 82

4.6.1 Theory . 82

4.6.2 Practice . 85

4.6.3 Exercise . 85

4.6.4 Solution . 86

4.7 Complex vectors and matrices 87

4.7.1 Inner product . 87

4.7.2 Norm from inner product and Cauchy-Schwartz in-

equality . 88

4

CONTENTS

4.7.3 Adjoint . 89

4.7.4 Unitary matrix . 89

4.7.5 Hermitian matrices . 90

5 Non linear equations 91

5.1 n = 1 . 91

5.1.1 “Monte Carlo” simulations 92

5.1.2 Bisection method . 94

5.1.3 Secant method . 94

5.1.4 Newton’s method . 95

5.2 Non linear systems . 97

6 Practice exercises 99

A Kronecker δ and symbolic sums 105

A.1 δ symbol . 105

A.2 Symbolic sums . 109

A.3 Application: the Derivative-Multiplication Commutator 111

B Programs 113

B.1 Matrix multiplication . 113

B.2 Gaussian elimination . 116

B.3 Inverse matrix . 121

B.4 LU decomposition . 126

B.5 Iterative methods . 133

B.6 Power method . 137

B.7 Non linear equations . 145

5

CONTENTS

6

Chapter 1

Linear systems

1.1 Introduction

Let us suppose we are managing a Natural Park in Africa, and we are worried

about the number of lions in our park. We want to increase the number of

lions, but the only way we have is to regulate the number of its preys, which

in our park are zebras and gazelles, by either killing them or introducing

new ones. We try to write down a mathematical model that tells us how

the number of animals in each species changes with time. Let us suppose

we know that, if left free to reproduce, each gazelle will generate, in average,

0.5 gazelles a year1, and that the same applies to zebras. We also know that

a lion kills 6 gazelles and 4 zebras a year. We also know that gazelles are

bad for zebras’ health, because they tend to eat their food, and in average

the presence of a gazelle in the environment will cause the death of 1 over

20 zebras a year. We also know that, if they cannot eat, lions die faster

than they can reproduce, and each year in absence of preys their number will

halve. Nevertheless, the presence of a gazelle in the environment (due to the

probability of eating and thus surviving and successfully reproducing) will

increase the number of lions, and in general we will have 3 lion births a year

for every 100 gazelles in the park. Zebras are good too, but not that good.

1An offspring for each male-female couple. This model is not intended to be in any

way a realistic one from a biological point of view; if you are interested in some population

dynamics you can google “Logistic growth” or “Prey-predator (Lotcka-Volterra)” models,

or check some books on the subject such as Murray’s “Mathematical Biology”. In general

even the simplest realistic models will be non-linear and thus will not be solvable with the

theory introduced in these lectures.

7

1.2 Informal review of systems of linear equations

Just 1 lion birth every 50 zebras.

Someone suggests to kill 50 zebras every year, and to introduce 100

gazelles, in order to stabilise the number of lions to the desired level. Will

that work? What will happen to the zebra and gazelle population?

Let us call the number of lions l, the number of gazelles g and the number

of zebras z. The variation of the number in each species is then given by

∆l = −0.5l + 0.03g + 0.02z, (1.1)

∆g = −6l + 0.5g + 100, (1.2)

∆z = −4l − 0.05g + 0.5z − 50. (1.3)

We don’t bother about studying what is the time evolution of the system,

but just wonder what is its “stationary state”, i.e., the condition for having

a stable number of animals in each population, that is







0 = −0.5l + 0.03g + 0.02z

0 = −6l + 0.5g + 100

0 = −4l − 0.05g + 0.5z − 50

. (1.4)

We put our equations together, to show that they are a system that has

to be solved “as a whole”. For reasons that will be clear later, we re-arrange

them as






−0.5l + 0.03g + 0.02z = 0

−6l + 0.5g + 0z = −100

−4l + 0.05g + 0.5z = 50

. (1.5)

We will now study an efficient way to solve this kind of mathematical

problem.

1.2 Informal review of systems of linear equa-

tions

1.2.1 Trivial cases

A linear or first order equation in the unknown variable x is an equation in

which only first powers of x appear, namely an equation in the form

ax = b. (1.6)

8

Linear systems

If a 6= 0, the solution is found as

x = a−1b, (1.7)

while obviously the inverse of 0 is not defined, and

0x = b (1.8)

has no solution for b 6= 0, and is valid for any x in case b = 0. These facts are

almost self evident but they may be used as a guiding light for generalising

to the many variable case.

A linear equation in two variables will be in the form

a1x1 + a2x2 = b, (1.9)

and (assuming a1 6= 0) solving for x1 we have many2 solutions depending on

the choice of x2
x1 = a−1

1 (b− a2x2). (1.10)

In other words, the equation is indeterminate, which may not be good if

we were looking for some explicit numbers. It is indeed a good rule of thumb

to have at least two equations if we are dealing with two variables, which

leads us to a system of (linear) equations, which we may write as
{

a1,1x1 + a1,2x2 = b1
a2,1x1 + a2,2x2 = b2

. (1.11)

Generalising, we will write the jth equation of a system of m equations

(j = 1, . . . ,m) in n variables as

n
∑

i=1

aj,ixi = bj, (1.12)

where the introduced notation will allow us to use the matrix formalism,

as we will see soon. We may also introduce some terminology, and name

homogeneous a system with bj = 0 ∀j (otherwise the system will be called

inhomogeneous).

Obviously having n equations and n variables does not assure a unique

solution. As an example let us consider
{

a1,1x1 + a1,2x2 = b1
a1,1x1 + a1,2x2 = b2

, (1.13)

2Continuously infinite.

9

1.2 Informal review of systems of linear equations

where the a coefficients are the same in the first and second equations. Clearly

there is something “wrong” with this system, and we intuitively understand

that if b1 = b2 the second equation provides no new information, while if

b1 6= b2 new information is available but there will be no values of x1, x2
satisfying both equations.

To formalise this, we may consider some basic properties of (systems of)

equations. If a is a real number and we have

B = C, D = E (1.14)

Also the following will hold

aB = aC, B +D = C + E, B + aD = C + aE. (1.15)

Namely, an equation will be still valid if we multiply each of its terms by

a constant, and if we sum two equations term by term (possibly multiplying

the terms by constants), we still obtain an equivalent equation. As a result,

by subtracting term by term the two equations in (1.13), we obtain the

equivalent system
{

a1,1x1 + a1,2x2 = b1
0 = b1 − b2

(1.16)

which has no solution if b1 6= b2, while if b1 = b2 the second equation is just

an identity in which the variables x1, x2 do not appear at all. In order to

be able to solve a system with n variables in a unique way we will thus not

just need n equations, but n independent equations. This concept will be

formalised below, but it is clear that, in the case of two variables, systems

like
{

a1,1x1 + a1,2x2 = b1
c a1,1x1 + c a1,2x2 = b2

(1.17)

will not lead to unique solutions (multiply the first equation by c and subtract

the second to obtain again 0 = c b1 − b2).

In the same way, while in general having more equations than variables

is a problem (i.e., x = 2 and x = 3) this is true only if the equations are

actually independent (no problems to solve x = 2, 2x = 4, just redundancy

of information).

Before proceeding to analyse formally the n equation case, let us use again

the two variable example to understand a property of homogeneous systems,

10

Linear systems

which will again provide insight on the general case. Let us assume

{

a1,1x1 + a1,2x2 = 0

a2,1x1 + a2,2x2 = 0
. (1.18)

This system, as any other homogeneous system, is trivially solved by

xi = 0 ∀i. Is the solution unique? Let us solve the first equation as

x1 = −a−1
1,1(a1,2x2). (1.19)

By substitution in the second, and after multiplying each term by a11, we

have

x2(a2,2a1,1 − a1,2a2,1) = 0. (1.20)

You may recognise the term in parentheses as the determinant of a matrix

with entries aj,i. If such a determinant is different from 0, then we have

x2 = 0, and as a consequence (eq. 1.19) x1 = 0, as the only possible solution.

Otherwise, each x2 will work, and we have an infinity of solutions, the relation

between the two variables being given by eq. (1.19). This is not by chance,

and indeed matrices and determinants play a fundamental role in determining

if a system has solutions or not, and if the solution is unique. We should

then revise their properties.

1.2.2 Vectors, matrices, determinants

We call3 a vector x ∈ Rn a collection of n real numbers (n-tuple)

{x1, . . . , xn}, (1.21)

and we define the operations of addition of two vectors

z = x+ y, zi = xi + yi, (1.22)

and multiplication of a vector with a scalar (real number) c

z = cx, zi = c xi. (1.23)

3No attempt of rigour or formality will be found in the following discussion, the inter-

ested reader may rely on a large number of excellent text on Linear Algebra for a deeper

and better treatment

11

1.2 Informal review of systems of linear equations

We then consider linear applications A that go from Rn to Rm. By

linear, we mean such that its action preserves the sum and pruduct by a

scalar operation, namely

A(cx) = cA(x), (1.24)

and

A(x+ y) = A(x) + A(y). (1.25)

Clearly, such applications cannot include terms like xli with l 6= 1, or

constant terms4, and thus, if

y = Ax, (1.26)

A will be written in the form

yj =
n
∑

i=1

aj,ixi, (1.27)

with j = 1, . . . ,m. We name A a m by n matrix, and write it as a table with

m rows and n columns

A =







a1,1 . . . a1,n
...

...
...

am,1 . . . am,n






. (1.28)

Let us consider now another linear application, B, this time from Rm to

Rl, and let B act on y, the result of the application of A on x. We may call

z = By = BAx ≡ Cx, (1.29)

where in the last step we defined the application C = BA that goes from Rn

to Rl, i.e. the result of applying B on the result of A. From our definition

of matrix, we have

yj =
n
∑

i=1

aj,ixi, zk =
m
∑

j=1

bk,jyj, zk =
n
∑

k=1

ck,ixi. (1.30)

We chose the name of indexes in such a way that putting together the

first and second expression we get

zk =
m
∑

j=1

bk,j

(

n
∑

i=1

aj,ixi

)

. (1.31)

4Consider for example A(x) = x+b. We have A(x+y) = x+y+b 6= x+y+2b = A(x)+

A(y). In a similar way, if A(x) = x2, A(x+ y) = x2 + y2 + 2xy 6= x2 + y2 = A(x) +A(y).

12

Linear systems

These may be re-written (due to the associative, commutative and ditribu-

tive properties of sums and product, try for a simple case!) as

zk =
n
∑

i=1

(
m
∑

j=1

bk,jaj,i)xi, (1.32)

which leads to the identification

ck,i ≡
m
∑

j=1

bk,jaj,i. (1.33)

This is indeed the “row by column” multiplication law between matrices.

Since k runs between 1 and l, and i between 1 and n, the matrix has the

correct number of terms, rows and columns.

As it is usual, vectors may be treated as single columns matrices. Namely,

the (n) xi component of the vector may be considered as the x1,i components

of a matrix, and applying a m × n matrix on them will generate a single

column, m component, matrix, i.e. a m component vector.

Writing a vector as a column, instead of a row, may seem a waste of

space, but the notation is particularly handy when we consider our original

problem, linear equation systems. By comparing eqs. (1.12) and (1.27), we

may see that an inhomogeneous system of m equations with known terms bj
for the n variables xi may be written as

Ax = b. (1.34)

Graphically, this becomes







a1,1 . . . a1,n
...

...
...

am,1 . . . am,n













x1
...

xn






=







b1
...

bm






, (1.35)

leaving the coefficient aj,i of the matrix in the same row and column structure

in which we are used to see equation systems. We have thus established a

connection between linear systems and matrices, with the m× n coefficients

of the system generating a m row n column matrix.

Can we solve eq. (1.34) as we did for eq. (1.6)? In the solution (1.7) we

used the inverse of a, a−1. What is such an inverse for a matrix, supposed

that it exists? For real numbers the inverse was defined ∀a ∈ R, a 6= 0 as

13

1.2 Informal review of systems of linear equations

the number a−1 such that aa−1 = 1. We introduced matrices as linear ap-

plications (functions or better mappings) between (possibly) different vector

space, so if we want to “inverse” a matrix, we have to look for its inverse

mapping. It is possible to define such an inverse A−1 for a class of square

(n× n) matrices (those that have non-zero determinant) as

A−1A = AA−1 = 1. (1.36)

A few clarifications have to be given regarding this latter equation. The

first one obviously regards the symbol on the right, 1. This represent the

identity application on the space Rn, i.e. the mapping that brings each vector

in itself. This application is obviously linear, and may be written as a matrix.

It is easy to check that we have

1 =

















1 0 0

0 1 0 . . . 0
... 0

. . . 0
...

...
... 0

. . .
...

0 0 1

















, (1.37)

or, equivalently,

1j,i = δj,i, (1.38)

where the Kronecker delta (see appendix A) satisfies

δj,i =

{

1 if i = j

0 if i 6= 0
. (1.39)

In eq. (1.36) we were also careful in asking that the inverse application

gives the identity both when applied on the result of A, and when A is

applied on its result. In general, we know that when we are dealing with

functions, the order in which they are applied is important. Indeed, for non-

square matrices, we may have that while BA is defined, AB may not even be

defined, since a m× n matrix cannot be multiplied on the left (i.e., applied

to the result) of a k ×m matrix if k 6= n.

For square matrices we do not have this problem, but in general the

matrix product is not commutative, i.e. BA 6= AB.5 As a trivial example,

5This trivial mathematical property was surprisingly not known, in 1925, to the 23 years

old physics Ph.D. Werner Heisenberg. Maybe thanks also to this hole in his mathematical

14

Linear systems

we may check the product

(

1 0

−1 0

)(

1 1

0 0

)

=

(

1 1

−1 −1

)

, (1.40)

while
(

1 1

0 0

)(

1 0

−1 0

)

=

(

0 0

0 0

)

. (1.41)

The second product leads to a matrix full of zeros, i.e. a matrix that,

applied on any vector, produces a vector full of zeros. We may call such a

matrix O. The fact that this matrix may be obtained as the product of two

non-zero matrices shows us again how the product of matrices is less trivial

than the product of real numbers.

When dealing with reals (i.e., with a single variable) we knew that ax = b

had no solution (for b 6= 0, or infinite solutions for b = 0) only when a = 0.

Indeed, we still have that

Ox = b (1.42)

has no solution (unless bi = 0 ∀i, in which case the system has infinite solu-

tions; in both cases the system has no unique solution), but this will happen

also for a larger class of square matrices, namely those that have determinant

equal to zero, i.e. singular matrices.

Formal treatments of determinants are quite troublesome, and we do not

enter here in the details of the theory6. For our purposes it is enough to

remember the following properties:

• If we multiply a row of matrix by a constant c, then also the matrix’s

determinant is multiplied by c

background (but mainly to his genius), Heisenberg went on associating an electron’s po-

sition and momentum (components) not to real numbers but to matrices, and eventually

went on to discover his uncertainty principle, get a Nobel price and perform one of the

greatest revolutions in the history of human thought and knowledge.
6You may refer again to many good Linear Algebra texts; a good practical definition of

a determinant uses the concept of minor, i.e. computes the value of a determinant based

on those of smaller sub-matrices, reducing eventually to 2× 2 matrices for which an easy

closed form is available, but the number of terms in these calculations gets extremely high

for high n, unless the matrix has a particular form (many zeros). Formal proofs often use

an extremely useful and elegant mathematical object, the totally asymmetrical Levi-Civita

symbol.

15

1.2 Informal review of systems of linear equations

• If we sum to a row of matrix another row, possibly multiplied by a

constant c, the matrix’s determinant does not change

The first property tells us that if a matrix has a row full of zeros, then its

determinant is zero7. The second one tells us that if one of the rows may be

written as a linear combination of the other rows, we may obtain a matrix

(by subtracting other rows multiplied by proper constants) with a row of

zeros, without changing the value of the determinant. In other words, such a

matrix has determinant zero.

We finally came to the generalisation of the problem we studied at the be-

ginning for simple (2, 3 variables) cases. We had seen that a system with

n equations and n variables had a unique solutions only if all the equations

where independent between them. This can be formalised by saying that

none of the rows of the corresponding matrix of coefficients may be written

as a linear combination of the others, and, as we just discussed, this cor-

responds to the matrix having determinant different from zero, i.e. being

non-singular.

For such matrices the inverse may be defined (we will discuss later how

to compute it), and the system Ax = b formally solved as

x = 1x = A−1Ax = A−1b. (1.43)

In this case, the solution is unique, both for homogeneous and inhomogeneous

systems (in the latter case it is obviously xi = 0).

Determinants give us also a lot of information about singular matrices,

and also for the more general m × n case. Without entering in details, we

may remember that the rank k of a matrix is the size of its largest sub-

matrix (i.e., a matrix that is obtained by the original one eliminating a few

rows and columns) with non-zero determinant. In case all the determinants

of matrices that may be obtained by adding a row of coefficients and the

column of known terms to this sub-matrix are zero, the system has at least a

solution. The solution is unique if the rank k equals the number of variables.

7This can be obviously derived directly also from a definition of determinant, for ex-

ample from the one that uses minors.

16

Linear systems

1.3 Algorithms to solve linear equation sys-

tems

Let us consider a simple linear equations system

{

3x1 + 2x2 = 8

x1 − 4x2 = −2
(1.44)

One very intuitive way of solving it is to isolate the first variable in the

second equation

x1 = 4x2 − 2, (1.45)

substitute in the first

3(4x2 − 2) + 2x2 = 8 ⇒ 14x2 = 14 ⇒ x2 = 1, (1.46)

and finally again in the second

x1 = 4x2 − 2 = 4− 2 = 2. (1.47)

This procedure works quite well for n = 2 and it is obviously correct for

any n. Nevertheless, as you can check already in the case of a simple n = 3

system,






4x1 − 3x2 + x3 = 1

x1 + x2 + x3 = 6

−x1 + 2x2 − 2x3 = −3

, (1.48)

the calculation becomes easily messy with growing n. Furthermore, the pro-

cedure gets much easier if we do “the right choices” (for example, starting

from the second equation in eq. 1.44), and involves formal relations between

variables, which are not easy to implement in programming languages.

By algorithm we mean a set of computational rules that will lead us to the

solution of the problem (if such solution exists, and inform us in the case the

solution does not exist or it is not unique), rules that may be implemented

on a computer.

Mathematicians of the past have provided us with such algorithms. Let us

first understand the logic behind the algorithm before stating it in a formal

way. If we go back to the example (1.44), and remember (eq. 1.15) that

we may add to an equation a linear combination of other equations without

17

1.3 Algorithms to solve linear equation systems

changing the system, we may notice that if we add to the second equation

the first one multiplied by −1/3, we cancel x1 from it

{

3x1 + 2x2 = 8

x1 − x1 − 4x2 − 2
3
x2 = −2− 8

3
⇒ −14

3
x2 = −14

3

. (1.49)

In this way in the second equation we have decreased the number of variables

to one, and we may easily solve as
{

3x1 = 8− 2x2
x2 = 1

⇒
{

3x1 = 6

x2 = 1
⇒
{

x1 = 2

x2 = 1
. (1.50)

The procedure is easily extended and formalised to a n variable system.

We first write our system in matrix form

Ax = b, (1.51)

and then repeatedly use the above procedure (subtracting equations) until

we obtain a system in the form

A′x = b′, (1.52)

where A′ is a matrix in the upper triangular form, i.e. a′j,i = 0 if j > i, or

A′ =

















a′1,1 a′2,2 a′n,n
0 a′2,2 a′2,3 . . . a′2,n
... 0

. . . a′i,j
...

...
... 0

. . .
...

0 0 a′n,n

















, (1.53)

and then proceed to solve for each variable

xn = b′n/a
′
n,n (1.54)

xn−1 = (b′n−1 − a′n−1,nxn)/a
′
n,n, (1.55)

and so on. Formally,

• for j = 1, . . . , n

– for l = j + 1, . . . , n

compute the multiplying factor or multiplicator ml,j = ajl,j/a
j
j,j,

where ajj,j is called the jth pivot

substitute aj+1
l,j = ajl,j −ml,ja

j
j,j = 0

18

Linear systems

∗ for i = j + 1, . . . , n

substitute aj+1
l,i = ajl,i −ml,ja

j
j,i

substitute bj+1
l = bjl −ml,jb

j
j

• for j = n, . . . , 1

xj =
(

bnj −
∑n

i=j+1 a
n
j,ixi

)

anj,j

Let us do it for the example of eq. (1.48). We have

A =





1 1 1

−1 2 −2

4 −3 1



 b =





6

−3

1



 . (1.56)

At the first step we get m2,1 = −1, m3,1 = 4, and

A2 =





1 1 1

0 3 −1

0 −7 −3



 b2 =





6

3

−23



 . (1.57)

The next multiplicator is m3,2 = −7/3 and finally we have

A3 =





1 1 1

0 3 −1

0 0 −16/3



 b3 =





6

3

−16



 . (1.58)

With backward substitution we get x3 = 3, x2 = (3 + 3)/3 = 2 and

x1 = 6− 3− 2 = 1 or

x =





1

2

3



 . (1.59)

1.3.1 What may go wrong?

Let us consider this system

{

0.0003x1 + 63.324x2 = 63.327

5.2922x1 − 7.133x2 = 45.789
, (1.60)

whose solution is

x =

(

10

1

)

, (1.61)

19

1.3 Algorithms to solve linear equation systems

as can be easily checked (by substitution). Let us solve it according to our

algorithm, but as a computer would do it, i.e. just keeping a finite number

of digits (we keep 5, computers would typically do better than that8).

We obtain m2,1 = 17640.666 . . . ≈ 17641. We then substitute and solve

for x2 = 1.0001 and. . .x1 = −10!!!!

The extremely high value of m, when multiplied by a1,2 and b1, gave rise to

numbers that where extremely big (6 order of magnitude larger) than a2,2 and

b2, so that these latter contributions where just cancelled in the rounding.

These caused a tiny error in x2, but when replaced in the first equation, due

again to the small value of a1,1 with respect to a1,2 and b1, this produced a

huge mistake in the value of x1.

How to avoid this problem? The first impression would be that it is caused

by the small value of the pivot a1,1, and the algorithm could be corrected in

order to look for the largest absolute value pivot, and exchange rows in order

to avoid the use of small (or even worst, zero!) pivots.

But this would not work. If you read carefully the argument given above,

more than the absolute value of a1,1, was its relative value to a1,2 to cause

problems. You can convince yourself by studying, again with 5 digit precision,

the following system, where the coefficients in the first line are multiplied by

105.
{

30x1 + 6332400x2 = 6332700

5.2922x1 − 7.133x2 = 45.789
. (1.62)

We may then modify our algorithm, that we may call Gaussian elimina-

tion with scaled partial pivoting9 in the following way

• for j = 1, . . . , n

– for l = j, . . . , n

compute the scale factor σl = maxi |ajl,i|

• for j = 1, . . . , n find the line l = maxi |aji,j|/σi

– for i = j, . . . , n replace ājj,i = ajl,i
and ājl,i = ajj,i

88 digits in single precision, 16 in double precision, or much more in high precision

computations.
9Partial because we search for the best pivot over rows, but we do not perform column

exchange.

20

Linear systems

replace σ̄j = σl,

and σ̄l = σj.

replace b̄jj = bjl
and b̄jl = bji .

IF(ājj,j = 0): EXIT (no unique solution)

Using the barred variables (even if not shown)

– for l = j + 1, . . . , n

compute the multiplying factor ml,j = ajl,j/a
j
j,j, where a

j
j,j is called

the jth pivot

substitute aj+1
l,j = ajl,j −ml,ja

j
j,j = 0

∗ for i = j + 1, . . . , n

substitute aj+1
l,i = ajl,i −ml,ja

j
j,i

substitute bj+1
l = bjl −ml,jb

j
j

IF(ānn,n = 0): EXIT (no unique solution)

• for j = n, . . . , 1

xj =
(

bnj −
∑n

i=j+1 a
n
j,ixi

)

/anj,j.

In this algorithm there is no column swap, so the result will be given in

the original variable order10.

Let us use this algorithm for a modified version of eq. (1.48). We want

to solve Ax = b for

A =





1 2 1

−1 2 −2

4 −3 1



 b =





8

−3

1



 . (1.63)

We start by computing a vector of scale factors, i.e. of maximal modulus in

each row,

σ =





2

2

4



 . (1.64)

10For complete pivoting, at the end we would need to keep track of all row substitutions

for obtaining the result in the original form.

21

1.3 Algorithms to solve linear equation systems

We have |a1,1|/σ1 = 1/2, |a2,1|/σ2 = 1/2 and |a3,1|/σ3 = 4/4 = 1. The

maximum is for the third row, and thus we swap the third and first row,

obtaining the system




4 −3 1

−1 2 −2

1 2 1



x =





1

−3

8



 . (1.65)

The scale factors become

σ =





4

2

2



 . (1.66)

Computing the multiplicators, at the first step we get m2,1 = −1/4,

m3,1 = 1/4, and the system modifies to




4 −3 1

0 5/4 −7/4

0 11/4 3/4



x =





1

−11/4

31/4



 . (1.67)

We have now11 |a2,2|/σ2 = 5/8, |a3,2|/σ3 = 11/8, with a maximum on the

third row. We swap again the second and third row to obtain




4 −3 1

0 11/4 3/4

0 5/4 −7/4



x =





1

31/4

−11/4



 . (1.68)

There is no need of using scale factors on the last row (since we have no

choice but usining it). The next multiplicator is m3,2 = (5/4)/(11/4) = 5/11

and finally we have




4 −3 1

0 11/4 3/4

0 0 −23/11



x =





1

31/4

−69/11



 . (1.69)

With backward substitution we get x3 = 3, x2 = 4/11[31/4−9/4] = 2 and

x1 = 1/4[1 + 3(2)− 3] = 1 or

x =





1

2

3



 . (1.70)

11Since there is no risk of misunderstanding, we will now denote the transformed matrix

A2 simply as A.

22

Linear systems

1.4 Review of Linear Algebra: Exercises

1. Exercise Using analytical geometry (lines in a plane) discuss when a

system of 2 equations in 2 variables has

• 1 solution

• ∞ solutions

• no solution

May we have 1 < n <∞ solutions?

2. Exercise For an homogeneous system (b1 = b2 = 0) can you provide

an example with no solutions?

3. Exercise Rewrite the “African Park” example in matrix form.

4. Exercise Rewrite in matrix form







27 + y + 32z + x+ w = 0

2x+ 3y + w = 7

−7x+ w − 7y − z + 2y + 3 = 0

5. Exercise Compute





−1 3 2

2 0 1

1 0 −2









3

0

4





6. Exercise Compute























0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0













































7

8

2

4

1

0

3























23

1.4 Review of Linear Algebra: Exercises

7. Exercise Compute























1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1













































7

8

2

4

1

0

3























8. Exercise Compute





1 0 0

0 2 0

0 0 3









3

−2

7





9. Exercise Compute














0 1 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 4

0 0 0 0 0





























3

1

0

2

0















I call this matrix D for “derivation”. Why? (Hint: polynomials)

10. Exercise Compute














0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0





























3

1

0

2

0















I call this matrix M for “multiplication” (by x). Why? (Hint: see

above.)

11. Exercise Show the equivalence of

zk =
∑

j

bkj

(

∑

i

ajixi

)

24

Linear systems

and

zk =
∑

i

(

∑

j

bkjaji

)

xi

You may also do it only for a particular example.

12. Exercise Compute





−1 3 2

2 0 1

1 0 −2









2 1

1 −1

0 −3





13. Exercise Compute





0 0 0

0 0 0

0 0 0









1 2 3

4 5 6

7 8 9





14. Exercise Compute





1 0 0

0 1 0

0 0 1









1 2 3

4 5 6

7 8 9





15. Exercise Compute





1 0 0

0 2 0

0 0 3









1 2 3

4 5 6

7 8 9





16. Exercise Compute





1 2 3

4 5 6

7 8 9









1 0 0

0 2 0

0 0 3





17. Exercise Using the matrices D of Ex. 9 and M of Ex. 10 compute

DM −MD

18. Exercise (Advanced) Can you do Ex. 17 on the infinite polynomial

space? (Hint: use the Kronecker δ)

25

1.4 Review of Linear Algebra: Exercises

19. Exercise Study the number of solutions of the following systems using

determinant methods and compare to the graphical method

{

x1 − 2x2 = 2

2x1 − 4x2 = 4

{

x1 − 2x2 = 2

2x1 − 4x2 = 3

26

Linear systems

1.5 Solution of Linear Sistems: Exercises

1. Exercise Solve






x1 + x2 + x3 = 6

−x1 + 2x2 − 2x3 = −3

4x1 − 3x2 + x3 = 1

2. Exercise Solve the African Park model







−0.5l + 0.03g + 0.02z = 0

−6l + 0.5g + 100 = 0

−4l + 0.05g + 0.5z − 50 = 0

3. Exercise Solve






x1 + x2 + x3 = 10

x1 + x2 − x3 = −2

3x1 − x2 + 6x3 = 36

4. Exercise Solve with 4 digits precision (rounding)

{

0.003x1 + 59.14x2 = 59.17

5.291x1 − 6.38x2 = 46.53

5. Exercise Solve with 4 digits precision (rounding)

{

30x1 + 591400x2 = 591700

5.291x1 − 6.38x2 = 46.53

6. Exercise Solve


















x1 + x2 + x3 + x4 = 4

x1 − x2 + x3 + x4 = 2

x1 + x2 − x3 + x4 = 2

x1 − x2 + 3x3 + x4 = 4

7. Exercise Solve


















x1 + x2 + x3 + x4 = 4

x1 − x2 + x3 + x4 = 2

2x1 + 2x3 + 2x4 = 7

3x1 − 2x2 − x3 + 4x4 = 4

27

1.5 Solution of Linear Sistems: Exercises

8. Exercise Solve


















x1 + x2 + x3 + x4 = 4

x1 − x2 + x3 + x4 = 2

2x1 + 2x3 + 2x4 = 6

3x1 − 2x2 + 3x3 + 4x4 = 8

28

Chapter 2

Numerical Linear Algebra:

Determinant, Inverse and LU

decomposition

2.1 Determinant

Let us recall one possible definition of the determinant, based on minors (us-

ing the first column, but different columns or rows could be used). Assuming

A to be a n× n square matrix, we have

det(A) =
∑

j

(−)j+1 det(Cj,1), (2.1)

here, Cj,1 is the n−1×n−1 square matrix obtained by deleting the jth row

and 1st column, for example if

A =















a1,1 a2,1 a1,n
a2,1 a2,2 a2,n
a3,1 a3,2 a3,n
...

...
...

...
...

an,1 an,2 an,n















, (2.2)

29

2.1 Determinant

we have

C1,1 =











a2,2 a2,n
a3,2 a3,n
...

...
...

...

an,2 an,n











, C2,1 =











a1,2 a1,n
a3,2 a3,n
...

...
...

...

an,2 an,n











.

(2.3)

For a 2× 2 matrix

A =

(

a1,1 a1,2
a2,1 a2,2

)

, (2.4)

we have C1,1 = a2,2, C2,1 = a1,2 and thus

det(A) = (−)2a1,1a2,2 + (−)3a2,1a1,2 = a1,1a2,2 − a2,1a1,2, (2.5)

as we expected.

The computation of a 2× 2 determinant implies 2 multiplications1. For a

3×3 determinant, we will compute 3 multiplications with 2×2 determinant,

and thus we overall have 3! = 6 multiplications. For a 4× 4 determinant we

will have 4! multiplications, and by induction n! multiplications for a n square

matrix. Cranmer’s rule uses a determinant based method to solve linear

systems, involving ∼ n! operations, while Gaussian Elimination involves ∼ n3

(if optimised, roughly n3/3)2 Cranmer’s rule is popular for solving by hand

small systems, but it’s not used by computers. Why? It would take billions

of years to solve a 30×30 system with Cranmer’s method even on the world’s

most powerful computer!

How may we compute the determinant of a matrix then? Let us first

consider

det

(

a1,1 a2,1
0 a2,2

)

= a1,1a2,2. (2.6)

We may now use eq. (2.1) and obtain

det





a1,1 a2,1 a3,1
0 a2,2 a2,3
0 0 a3,3



 = +a1,1 (a2,2a3,3)− 0 + 0 = a1,1a2,2a3,3. (2.7)

1Multiplications and divisions are more time consuming for computers than additions

and subtractions.
2The n3 order comes from the fact the main loop in which to each row the pivot row

multiplied by the multiplying factor is subtracted. This loop runs over all possible pivot

rows (j = 1, . . . , n), over all the rows behind the pivot (l = j + 1, . . . , n) and over all the

columns in the rows (i = j+1, . . . , n). Clearly the number of operations is lower than n3,

but grows as αn3 where α is a constant.

30

Numerical Linear Algebra: Determinant, Inverse and LU
decomposition

n3 n!

3 27 6

5 125 120

10 1000 3628800

30 27000 2.65 ·1032

Table 2.1: Comparison between n3 and n!

We have thus seen that for 2 and 3 upper triangular matrices (and obviously

for unit matrices) the determinant is given by the product of the diagonal

terms. This is true for any n, i.e. if U is an upper triangular matrix, we have

det(U) =
n
∏

i=1

uj,j (2.8)

The proof by induction is straightforward. If we know that (2.8) is true for

n− 1, then

det



















u1,1 u2,1 u1,n

0 u2,2
...

... 0
.

...
...

... 0
. . .

...

0 0 un,n



















= u1,1 det (C1,1) + 0 = u1,1

n
∏

i=2

uj,j. (2.9)

But we know a method to reduce a matrix to an upper triangular form,

Gaussian Elimination, which involves ∼ n3 operations. It includes operations

such as adding to a row an other row, which do not affect the value of the

determinant3; and, in case the pivot is 0, swapping two rows, which changes

the determinant’s sign, as can be seen easily from eq. (2.1) and checked for

a 2 by 2 matrix

det

(

a2,1 a2,2
a1,1 a1,2

)

= a2,1a1,2 − a2,2a1,1 = − det

(

a1,1 a1,2
a2,1 a2,2

)

. (2.10)

3By using the row version of (2.1) and the appropriate row, we may rewrite the deter-

minant as the sum of two terms, one of them the original determinant, and the other one

a determinant including two linearly dependent rows. The second term is thus 0, and the

determinant does not change.

31

2.1 Determinant

So we may compute the determinant using Gaussian Elimination and

keeping track of each row swap, calling ns the number of swaps. After ob-

taining the triangular form for A, we compute

det = (−)ns

n
∏

i=1

ajj. (2.11)

This involves ∼ n3 operations. There are some manipulations that involve n

computations (as for example eq. 2.11) or n2 (computing the multiplicators),

but the only n3 manipulation is the subtraction ali = ali −mljaji. This is a

∼ n3 term since it runs over the 3 indexes j, l, i, each one running respectively

over n columns, n− j rows, n− j columns.

To revise the method of Gaussian Elimination, let us do the following

exercise.

2.1.1 Exercise

Using Gaussian Elimination compute

det















1 1 0 1 0

0 0 1 1 1

1 2 1 0 1

2 0 3 0 0

1 0 0 1 0















.

Solution

The multiplying factors are m2,1 = 0, m3,1 = 1, m4,1 = 2 and m5,1 = 1, and

after the row subtractions the matrix modifies to















1 1 0 1 0

0 0 1 1 1

0 1 1 −1 1

0 −2 3 −2 0

0 −1 0 0 0















.

We cannot compute the multiplicators using a2,2 = 0. We then swap the

32

Numerical Linear Algebra: Determinant, Inverse and LU
decomposition

rows 2 and 3 to obtain














1 1 0 1 0

0 1 1 −1 1

0 0 1 1 1

0 −2 3 −2 0

0 −1 0 0 0















.

The number of swaps is now ns = 1. The multiplying factors are now m3,2 =

0, m4,2 = −2 and m5,2 = −1, and after the row subtractions the matrix

modifies to














1 1 0 1 0

0 1 1 −1 1

0 0 1 1 1

0 0 5 −4 2

0 0 1 −1 1















.

The multiplying factors are m4,3 = 5 and m5,3 = 1. After row subtractions

the matrix modifies to














1 1 0 1 0

0 1 1 −1 1

0 0 1 1 1

0 0 0 −9 −3

0 0 0 −2 0















.

The last multiplier is m5,4 = 2/9. We obtain














1 1 0 1 0

0 1 1 −1 1

0 0 1 1 1

0 0 0 −9 −3

0 0 0 0 2/3















.

The determinant is

detA = (−1)1(1)(1)(1)(−9)(2/3) = 6 (2.12)

2.2 Inverse

Formally we now that Ax = b is solved by x = A−1b, but we did not use

this property to solve a system, since Gaussian Elimination is more efficient.

33

2.2 Inverse

But how may we compute an inverse A−1? The inverse, after all, can be used

if we have to solve many systems as

Axi = bi ⇒ xi = A−1bi, (2.13)

where A does not depend on i. After all, once we get A−1, the matrix product

involves only n2 operations.

To compute A−1 we may use again Gaussian Elimination. Let us solve

the i = 1, .., n systems

Adi = ei eij = δj,i. (2.14)

Namely,

e1 =















1

0

0
...

0















, e2 =















0

1

0
...

0















. . . . (2.15)

We may now check that the columns of A−1 are given by the vectors di

A−1 =
(

d1|d2| . . . |di| . . . |dn−1|dn
)

, (2.16)

or

A−1
j,i = dij (2.17)

Indeed

(AA−1)j,i =
∑

l

aj,la
−1
l,i =

∑

l

aj,ld
l
i = Adi

j = eij = δj,i. (2.18)

There is anyway, from a computational point of view, no need to solve n

systems, since the operations on A are always the same. It may be shown

that the total number of operations is of order ∼ n3 (∼ 4/3n3, i.e. 4 times

Gaussian elimination). The trick is, while reducing A to the diagonal form, to

operate the substitution not on a single ei, but to all of them simultaneously,

i.e. to a n× n identity matrix. Namely we operate on

(A|1) , (2.19)

and finally solve the n systems by backsubstitution to find the columns di of

A−1.

34

Numerical Linear Algebra: Determinant, Inverse and LU
decomposition

2.2.1 Exercise

Use the above method to invert





1 1 0

1 2 1

1 2 0



 .

Solution

We use Gaussian Elimination to simultaneously solve the 3 systems

Ad1 = e1,

Ad2 = e2,

Ad3 = e3,

the inverse matrix will be given by

A−1 = (d1|d2|d3)

and we may thus identify dj ≡ (A−1)j.

We write




1 1 0 1 0 0

1 2 1 0 1 0

1 2 0 0 0 1



 .

The multiplicators are

m2,1 = a2,1/a1,1 = 1,

m3,1 = a3,1/a1,1 = 1.

Now, when we subtract from the jth row the first row multiplied by mj,1,

we need to act also on the known terms on the left. The result of the first

iteration is




1 1 0 1 0 0

0 1 1 −1 1 0

0 1 0 −1 0 1



 .

Now we have

m3,2 = a3,2/a2,2 = 1,

35

2.2 Inverse

and the next iteration of Gaussian Elimination gives





1 1 0 1 0 0

0 1 1 −1 1 0

0 0 −1 0 −1 1



 .

We now solve





1 1 0

0 1 1

0 0 −1



A−1
1 =





1

−1

0





to find the first column of the inverse matrix. We use back substitution

A−1
3,1 = 0,

A−1
2,1 = −1,

A−1
1,1 = 1 + 1 = 2.

Then we solve





1 1 0

0 1 1

0 0 −1



A−1
2 =





0

1

−1





to find the second column of the inverse matrix. We use back substitution

A−1
3,2 = 1,

A−1
2,2 = 1− 1 = 0,

A−1
1,2 = 0− 0 = 0.

Finally we solve





1 1 0

0 1 1

0 0 −1



A−1
3 =





0

0

1





to find the third column of the inverse matrix. We use back substitution

A−1
3,3 = −1,

A−1
2,3 = 1,

36

Numerical Linear Algebra: Determinant, Inverse and LU
decomposition

A−1
1,3 = −1.

So that

A−1 =





2 0 −1

−1 0 1

0 1 −1



 .

The result may be checked by computing A−1A = 1.

2.2.2 Exercise

Invert






















1 0 0 0 0 0 0

−2 1 0 0 0 0 0

3 0 1 0 0 0 0

−1 0 0 1 0 0 0

4 0 0 0 1 0 0

−8 0 0 0 0 1 0

2 0 0 0 0 0 1























.

Solution

Since a1,1 = 1 we have mj,1 = aj,1. After the first iteration we obtain























1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 2 1 0 0 0 0 0

0 0 1 0 0 0 0 −3 0 1 0 0 0 0

0 0 0 1 0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 −4 0 0 0 1 0 0

0 0 0 0 0 1 0 8 0 0 0 0 1 0

0 0 0 0 0 0 1 −2 0 0 0 0 0 1























.

The matrix has been reduced to an upper triangular (actually diagonal) form

in a single iteration. Since the systems

1x = b

is solved by

x = b,

37

2.2 Inverse

we find that

A−1 =























1 0 0 0 0 0 0

2 1 0 0 0 0 0

−3 0 1 0 0 0 0

1 0 0 1 0 0 0

−4 0 0 0 1 0 0

8 0 0 0 0 1 0

−2 0 0 0 0 0 1























.

2.2.3 Exercise

Invert






















1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 2 1 0 0

0 0 0 3 0 1 0

0 0 0 −4 0 0 1























.

Solution

For the first 3 iterations all the multiplicators are 0, and there is no change

in the matrix or known terms. For the 4th iteration we have, since a4,4 = 1

we have mj,4 = aj,4. After the 4th iteration we obtain























1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 −2 1 0 0

0 0 0 0 0 1 0 0 0 0 −3 0 1 0

0 0 0 0 0 0 1 0 0 0 4 0 0 1























.

The matrix has been reduced to a diagonal form. Again since the systems

1x = b

is solved by

x = b

38

Numerical Linear Algebra: Determinant, Inverse and LU
decomposition

and we find that

A−1 =























1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 −2 1 0 0

0 0 0 −3 0 1 0

0 0 0 4 0 0 1























.

2.3 LU decomposition

Is A−1 the best we can do to solve many systems? Let us first consider

LUx = b. (2.20)

Here U is an upper triangular matrix, while L is lower triangular

L =



















l11 0 0

l21 l22 0 . . .
...

...
...

. . . 0
...

...
... . . .

. . . 0

ln1 lnn



















, U =



















u11 u21 u1n

0 u22
...

... 0
.

...
...

... 0
. . .

...

0 0 unn



















.

(2.21)

We name

Ux = y. (2.22)

We use forward substitution to solve

Ly = b. (2.23)

Namely, y1 = b1/l11,

yi =

[

bi −
i−1
∑

k=1

likyk

]

. (2.24)

Once obtained y, we solve eq. (2.22) with backward substitution. Forward

and backward substitution need n2 operations. But when can we use this

method? Let us first

39

2.3 LU decomposition

2.3.1 Exercise

Solve




1 0 1

3 4 5

1 4 12



x =





1

0

1



 ,

knowing that





1 0 1

3 4 5

1 4 12



 =





1 0 0

3 1 0

1 1 1









1 0 1

0 4 2

0 0 9



 .

Solution

We solve




1 0 0

3 1 0

1 1 1



y =





1

0

1



 .

We have

y1 = 1

y2 = −3

y3 = 1 + 3− 1 = 3

Now we solve




1 0 1

0 4 2

0 0 9



x = y =





1

−3

3



 .

We find

x3 = 3/9 = 1/3,

x2 = 1/4(−3− 2/3) = −11/12,

x1 − 1/3 = 2/3.

or

x =





2/3

−11/12

1/3



 .

40

Numerical Linear Algebra: Determinant, Inverse and LU
decomposition

2.3.2 Exercise

Using Gaussian Elimination solve





1 0 1

3 4 5

1 4 12



x =





1

0

1



 .

Solution

The multiplicators are given by m2,1 = 3, m3,1 = 1. The extended matrix

representing the system transforms to





1 0 1 1

0 4 2 −3

0 4 11 0



 .

The last multiplicator is m3,2 = 1, and finally the system becomes





1 0 1 1

0 4 2 −3

0 0 9 3



 .

This is exactly the system Ux = y that we solved above.

2.3.3 The algorithm

Performing the Gaussian elimination in the exercise above we arrived exactly

to the system Ux = y that we used to solve Ax = b knowing the decom-

position A = LU . We may also note that the multiplicators are related to

the form of the matrix L. The matrix L has (obviously, since it is lower

triangular) lj,i = 0 if j < i; lj,j = 1 and lj,i = mj,i for j > i, where m are the

multiplicators.

This did not happen by chance. It is easy to check that, if there is no

swap, the matrix that performs the transformation of the matrix that deletes

all the al,1 for l > 1, i.e. that performs the transformation al,i = al,i−ml,1a1,i

41

2.3 LU decomposition

for l > 1 is

M1 =























1 0 0

−m21 1 0 . . .
...

...
... 0

. . . 0
...

...
...

... . . .
. . .

... 0
...

...
. . . 0

−mn1 0 1























. (2.25)

The transformation ali = ali −mlkaki for l > k, i ≥ k is given by

Mk =























1 0 0

0 1 0 . . .
...

...
... 0 1 0

...
...

...
... −mlk 1

... 0
...

...
... 0

. . . 0

0 0 −mnk 0 . . . 1























. (2.26)

Namely the matrix U which is obtained as the result of Gaussian elimination

is given by applying all these matrices to the original matrix A, or

U =Mn−1Mn−2 . . .Mk . . .M2M1A. (2.27)

From this follows

(

M1
)−1

. . .
(

Mk
)−1

. . .
(

Mn−1
)−1

U = A. (2.28)

But we know, generalising exercises 2.3.1 and 2.3.2, the form of the
(

Mk
)−1

,

or

(Mk)−1 =























1 0 0

0 1 0 . . .
...

...
... 0

. . . 0
...

...
...

... mlk
. . .

... 0
...

...
... . . .

. . . 0

0 0 mnk 0 . . . 1























. (2.29)

It follows that if

L ≡
(

M1
)−1

. . .
(

Mk
)−1 (

Mn−1
)−1

, (2.30)

42

Numerical Linear Algebra: Determinant, Inverse and LU
decomposition

L is lower diagonal (verify it), given by

L =























1 0 0

m21 1 0 . . .
...

...
... m32

. . . 0
...

...
...

... mlk
. . .

... 0
...

...
... mn−1,n−2

. . . 0

mn1 mn2 mnk mn,n−2 mn,n−1 1























, (2.31)

and gives the wanted decomposition. This information is given by Gaussian

Elimination, provided that there are no swaps, i.e. that the pivot is never 0.

2.3.4 Exercise

Decompose LU










1 1 3 1

2 0 1 3

−2 1 0 1

4 1 0 0











.

Solution

We compute

m2,1 = a2,1/a1,1 = 2/1 = 2,

m3,1 = a3,1/a1,1 = −2/1 = −2,

m4,1 = a4,1/a1,1 = 4/1 = 4.

As a result the first column of the L matrix is

L1 =











1

2

−2

4











.

The transformed matrix is










1 1 3 1

0 −2 −5 1

0 3 6 3

0 −3 −12 −4











.

43

2.3 LU decomposition

The second step of Gaussian Elimination gives

m3,2 = a3,2/a2,2 = 3/(−2) = −3/2,

m4,2 = a4,2/a2,2 = (−3)/(−2) = 3/2.

The second column of L is given by

L2 =











0

1

−3/2

3/2











,

and the matrix transforms to










1 1 3 1

0 −2 −5 1

0 0 −3/2 9/2

0 0 −9/2 −11/2











.

For the last iteration we have m4,3 = (−9/2)/(−3/2) = 3, so that the

third column of L is given by

L3 =











0

0

1

3











,

and the matrix transforms to










1 1 3 1

0 −2 −5 1

0 0 −3/2 9/2

0 0 0 −19











.

This matrix is the U in the LU decomposition

The last column of the L matrix is always

L4 =











0

0

0

1











.

44

Numerical Linear Algebra: Determinant, Inverse and LU
decomposition

The LU decomposition is thus given by











1 1 3 1

2 0 1 3

−2 1 0 1

4 1 0 0











=











1 0 0 0

2 1 0 0

−2 −3/2 1 0

4 3/2 3 1





















1 1 3 1

0 −2 −5 1

0 0 −3/2 9/2

0 0 0 −19











.

as can be verified by matrix multiplication.

2.3.5 Dealing with swaps

What happens if there are swaps? We should keep track of them. Theo-

retically, the problem is treated by introducing permutation matrices, such

as

P{1,2,5,4,3,6} = P[3,5] =



















1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1



















. (2.32)

We used two different notations here. By P[3,5] we mean rows 3 and 5 being

swapped. By P{1,2,5,4,3,6} we mean that the 5th row is going to replace the

3rd, and the 3rd replacing the 5th. The matrix is constructed in such a way

that

(P{pj})j,i = δpj ,i, (2.33)

where p is the vector that appears as the index of P in the curly brackets.

Thus if B = PA we have

bji =
∑

l

(Pp)jlali =
∑

l

δpj ,lali = apj ,i. (2.34)

This relation obviously applies also to vectors, y = Px, and may be also

verified by applying the row by column operation.

With the P[] notation we considered single swaps between rows, but

clearly by applying many times swaps we may obtain more complex per-

mutation as in

P[1,4]P[1,2] = P{4,1,3,2}, (2.35)

45

2.3 LU decomposition

as may be verified by











0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0





















0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1











=











0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0











. (2.36)

Given the meaning of the permutation it easy to check that the transpose of

a permutation is its inverse

P TP = PP T = 1. (2.37)

We recall that the transpose is defined by

AT
j,i = Ai,j . (2.38)

Basically, applying a permutation and then its transpose, means just sending

a row somewhere, and then back to the original position.

We know that by swapping a few times rows, we may reduce a non-

singular matrix to the LU form. So, if we have to solve Ax = b, and we

know that there is a permutation P such that PA = LU , we just need to

solve PAx = Pb, knowing that PA = LU . Here LU is given as always by

the Gaussian Elimination process, while P is given by the sequence of swap.

There is no need to perform matrix multiplications or just use the matrix P

in explicit form, since the whole information is in the the index-vector p.

An important point is, while obtaining the matrix L (the matrix of mul-

tiplicators), to remember to swap already computed rows also in it, and not

only in U .

2.3.6 Exercise

Solve, using LU decomposition, the system











1 1 1 1

1 1 1 0

2 1 1 0

0 3 2 1











x =











5

2

3

5











.

46

Numerical Linear Algebra: Determinant, Inverse and LU
decomposition

Solution

We initialise the swap vector as

s =











1

2

3

4











.

We compute

m2,1 = a2,1/a1,1 = 1/1 = 1,

m3,1 = a3,1/a1,1 = 2/1 = 2

m4,1 = a4,1/a1,1 = 0/1 = 0

and as a result the first column of the L matrix is

L1 =











1

1

2

0











The transformed matrix is










1 1 1 1

0 0 0 −1

0 −1 1 2

0 3 2 1











We have now a2,2 = 0, so that a swap is needed. We swap the rows 2 and

3, and obtain the matrix










1 1 1 1

0 −1 1 2

0 0 0 −1

0 3 2 1











The swap vector modifies to

s =











1

3

2

4











47

2.3 LU decomposition

and the first column of L is modified to

L1 =











1

2

1

0











The second step of Gaussian Elimination gives now

m3,2 = a3,2/a2,2 = 0/(−1) = 0

m4,2 = a4,2/a2,2 = 3/(−1) = −3

The second column of L is given by

L2 =











0

1

0

−3











and the matrix transforms to










1 1 1 1

0 −1 −1 −2

0 0 0 −1

0 0 −1 −5











We have now a3,3 = 0, and we need to swap the 3rd and 4th row, so that

s =











1

3

4

2











The matrix is now










1 1 1 1

0 −1 −1 −2

0 0 −1 −5

0 0 0 −1











but we need also to keep track of the swaps in the matrix L, and re-write

48

Numerical Linear Algebra: Determinant, Inverse and LU
decomposition

L1 =











1

2

0

1











and

L2 =











0

1

−3

0











Now we have m4,3 = 0 and the third column of L is given by

L3 =











0

0

1

0











the matrix is unchanged











1 1 1 1

0 −1 −1 −2

0 0 −1 −5

0 0 0 −1











This matrix is the U in the LU decomposition (but not of the original matrix,

of the matrix obtained by swapping a few rows in the original one).

The last column of the L matrix is as always

L4 =











0

0

0

1











The LU decomposition is (notice the permutation)

PA =











1 1 1 1

2 1 1 0

0 3 2 1

1 1 1 0











=











1 0 0 0

2 1 0 0

0 −3 1 0

1 0 0 1





















1 1 1 1

0 −1 −1 −2

0 0 −1 −5

0 0 0 −1











49

2.3 LU decomposition

The matrix P is given by

P =











1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0











To solve a system by LU decomposition we first define

y ≡ Ux

where x is the solution of the system.

We now find y by solving

Ly = b

where, since

s =











1

3

4

2











we have

b =











5

3

5

2











The solution is found by forward substitution. Let us recall that the

system is










1 0 0 0

2 1 0 0

0 −3 1 0

1 0 0 1











y =











5

3

5

2











We have

y1 = 5

y2 = 3− 10 = −7

y3 = 5− 21 = −16

y4 = 2− 5 = −3

50

Numerical Linear Algebra: Determinant, Inverse and LU
decomposition

Finally we solve Ux = y or











1 1 1 1

0 −1 −1 −2

0 0 −1 −5

0 0 0 −1











y =











5

−7

−16

−3











This is solved by backward substitution, namely

x4 = −(−3) = 3

x3 = −(−16 + 15) = 1

x2 = −(−7 + 1 + 6) = 0

x1 = 5− 1− 3 = 1

The solution is thus

x =











1

0

1

3











.

51

2.3 LU decomposition

52

Chapter 3

Numerical Linear Algebra:

Norms and iterative methods

3.1 Introduction

Let us consider

Ax = b, (3.1)

A non-singular. We know the solution is x = A−1b, but in general, due to

numerical round-off, we will have access to an approximated solution, x̃ 6= b.

Thus, the residual vector

r = b− Ax̃, (3.2)

will be non-zero. Given r, we may solve

Aδx = r, (3.3)

so that

δx = A−1Aδx = A−1b− A−1Ax̃ = x− x̃. (3.4)

Of course we will have access again only to an approximate solution δ̃x for

which we may assume

δ̃x ≈ x− x̃. (3.5)

Many questions arise.

• If the residual r is small, does it mean that also the error δ̃x is small?

• What does it mean, first of all, that a vector is small?

53

3.2 Metrics and norms

• If we rename x0 ≡ x̃ and δx0 ≡ δ̃x and use an iterative process xn+1 =

xn + δxn, does the sequence converge to x = A−1b?

• And what does “convergence” mean for vectors?

3.2 Metrics and norms

3.2.1 Norm and distance

Let us first recall some notions from the familiar R case. We may say that our

numerical solution x̃ is close to the exact one x, or that the error δx = x− x̃

is small if

ε =
|x− x̃|
|x| =

|δx|
|x| ≪ 1, (3.6)

and typically we will compare |ε| to a threshold, such as a required precision.

Here we are actually using two, although related, concepts: the distance

between two points on R, |x − y|, and the “size” (norm) of a point on R,

|x|. More precisely, we are using the norm | | to define a distance between

two points as the size of their difference. As we remember from calculus,

this is also related to the concepts of convergence. In an informal way, let us

consider the transformation

xn+1 = Txn (3.7)

where

Tx ≡ αx+ β, |α| < 1. (3.8)

We have

|Tx− Ty| = |αx+ β − αy − β| = |α||x− y|, (3.9)

so that

|T nx− T ny| = |α|n|x− y|. (3.10)

As a consequence

|xn+1 − xn| = |α|n|x1 − x0|, (3.11)

and

lim
n→∞

|xn+1 − xn| = 0. (3.12)

54

Numerical Linear Algebra: Norms and iterative methods

We say that the sequence xn converges because the distance between its

elements goes to zero1. The limit is x such that x = Tx, and it is also called

a fixed point. As an example, we may use α = 1/2, β = 1 and x0 = 0. We

have

x1 = 1, x2 =
3

2
, x3 =

7

4
, x4 =

15

8
, . . . , (3.13)

converging to the fixed point x = 2.

Can we do the same for vectors?

3.2.2 Norms and distances between vectors

In Euclidean space2 points are given by 3 coordinates x = {x, y, z} (with

respect to a specific frame with given origin and orientation). The distance

between two points is

d(x1,x2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, (3.14)

as given by Pythagoras’ theorem. This is at the same time the size or norm

of the vector x− y.

The n dimensional versions of these formulae define Euclidean norm and

distance as

‖x‖ =

√

√

√

√

n
∑

i=1

x2i , (3.15)

and

d(x,y) = ‖x− y‖. (3.16)

Mathematicians found anyway that many definition of distance (or met-

ric) and norm are possible. A metric on a vector space is an application that

satisfies the following

d(x,y) ∈ R, d(x,y) ≥ 0, (3.17)

d(x,y) = 0 ⇔ x = y, (3.18)

d(x,y) = d(y,x), (3.19)

d(x,y) ≤ d(x, z) + d(z,y) ∀z. (3.20)

1This is an extremely informal proof. We will later show that the sequence is a Cauchy

one, and thus converges in a complete set as R.
2The usual geometry of our physical space, at least ignoring any relativistic effect.

55

3.2 Metrics and norms

The third property is called triangular inequality, and says that by passing

through a third point you may not find a shorter way than the one going

directly to y (Figure 3.1).

Figure 3.1: Triangular inequality, figure taken by Functional Analysis by

Kreysig.

The metric may be defined through a norm3, i.e.

d(x,y) = ‖x− y‖, (3.21)

where the norm satisfies

‖x‖ ∈ R, ‖x‖ ≥ 0, (3.22)

‖x‖ = 0 ⇔ x = 0, (3.23)

‖αx‖ = |α|‖x‖, (3.24)

‖x+ y‖ ≤ ‖x‖+ ‖y‖. (3.25)

‖x− y‖ clearly defines a metric, for example we have

d(x,y) = ‖x−y‖ = ‖x− z+ z−y‖ ≤ ‖x− z‖+ ‖z−y‖ = d(x, z)+ d(z,y).

(3.26)

It may be shown that a way to define a norm is to use the following

formula

‖x‖p =
(

n
∑

i=1

|xi|p
)1/p

p ≥ 1. (3.27)

3And a norm may be defined through a inner product.

56

Numerical Linear Algebra: Norms and iterative methods

For p = 1 we have the sum of the absolute values of all components, while

p = 2 gives the Euclidean norm. We may define also

‖x‖∞ = max
i

|xi|. (3.28)

For example, for the vector x = {1, 1, 1} we have

‖x‖1 = 3, ‖x‖2 =
√
3, ‖x‖∞ = 1. (3.29)

Nevertheless there is a theorem that tells us that on Rn, with any fi-

nite n, all norms are equivalent, meaning that given a succession xn, if

there is a norm such that limn→∞‖xn‖∗ = 0, then limn→∞‖xn‖ = 0 for

all norms. Equally, if there is a norm such that limn→∞‖xn‖∗ = ∞, then

limn→∞‖xn‖ = ∞ for all norms. An intuitive way of understanding this the-

orem is to visualise the unit balls (sets of points with norm lower or equal to

1) for different norms (Fig. 3.2). Clearly if a ball shrinks to zero, all balls

will follow.

Figure 3.2: Unit balls for different norms, n = 2, figure taken by Functional

Analysis by Kreysig.

57

3.3 Norms on matrices

3.3 Norms on matrices

A n × n matrix may be considered as a n2 component vector, and we may

use a vector norm to define a norm on matrices. Anyway, since matrices are

also operators on which we may define a multiplication rule, it is convenient

to look for a matrix specific norm that satisfies also

‖BA‖ ≤ ‖B‖‖A‖. (3.30)

Such a norm on operators may be defined using a norm on vectors. We

may define

‖A‖ ≡ max
x

‖Ax‖
‖x‖ . (3.31)

Since norms and matrices are linear,

‖A‖ = max
x

‖Ax‖
‖x‖ = max

x

∥

∥

∥

∥

Ax

‖x‖

∥

∥

∥

∥

= max
x

∥

∥

∥

∥

A
x

‖x‖

∥

∥

∥

∥

. (3.32)

So, we are actually checking only norm 1 vectors4, so an alternative definition

is

‖A‖ ≡ max
‖x‖=1

‖Ax‖. (3.33)

From the definition we clearly have

‖Ax‖ ≤ ‖A‖‖x‖, (3.34)

so, since ‖BAx‖ ≤ ‖B‖‖Ax‖, this norm satisfies eq. (3.30), since

‖BA‖ = max
x

‖BAx‖
‖x‖ ≤ ‖B‖max

x

‖Ax‖
‖x‖ = ‖B‖‖A‖. (3.35)

It is easy to show that

‖A‖∞ = max
j

∑

i

|aj,i|, (3.36)

or the maximum over rows of the sum of absolute values.

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ = max
‖x‖∞=1

(

max
j

∣

∣

∣

∣

∣

∑

i

aj,ixi

∣

∣

∣

∣

∣

)

≤ max
‖x‖∞=1

(

max
j

∑

i

|aj,ixi|
)

≤ max
j

∑

i

|aj,i|.

(3.37)

4Since
∥

∥

∥

x

‖x‖

∥

∥

∥ = ‖x‖
‖x‖ = 1.

58

Numerical Linear Algebra: Norms and iterative methods

The last inequality follows since |xi| ≤ 1 for ‖x‖∞ = 1 vectors. But if we

choose xi = 1 if aj∗,i ≥ 0, xi = −1 if aj∗,i < 0 for the particular j∗ =

maxj
∑

i |aj,i|, we obtain

‖A‖∞ ≥ max
j

∑

i

|aj,i|, (3.38)

and thus prove eq. (3.36). It is also possible to show

‖A‖1 = max
i

∑

j

|aj,i|, (3.39)

or the maximum over columns of the sum of absolute values. For the 2

norm it is more difficult. We first define the matrix ATA,5 and look for its

eigenvalues λi (which are real and positive). We have then

‖A‖2 = max
i

√

λi. (3.40)

Without entering to much in eigenvalue and eigenvector theory (more on

this later), it is easy to understand that these are related to the norm. Let

us recall that if vλi
is a eigenvector of A with eigenvalue λi, we have

Avλi
= λivλi

. (3.41)

Let us call the spectral radius of A

ρ(A) = max
i

|λi|. (3.42)

Choosing the maximum λ∗ we have

ρ(A)‖vλ∗‖ = |λ∗|‖vλ∗‖ = ‖λ∗vλ∗‖ = ‖Avλ∗‖ ≤ ‖A‖‖vλ∗‖, (3.43)

and thus

ρ(A) ≤ ‖A‖. (3.44)

3.4 Contraction theorem

We may now state a useful theorem. Let us assume ‖A‖ = α < 1 is a matrix

on Rk, and consider Tx ≡ Ax+b. We may show that xn+1 = Txn converges

to the only fixed point Tx∗ = x∗.

5We are here assuming A it’s a real matrix. For complex ones, the adjoint (complex

conjugate transpose) is used.

59

3.5 Iterative refinement

First of all, we have

d(Tx,y) = ‖Tx− Ty‖ = ‖A(x− y)‖ ≤ ‖A‖‖x− y‖ = αd(x, y). (3.45)

A transformation with this property is called a contraction. We may now

show

d(xn+1,xn) ≤ αd(xn,xn−1) ≤ . . . ≤ αnd(x1,x0). (3.46)

From this, if m > n, and defining β = d(x1,x0) we have

d(xm,xn) ≤
m−n−1
∑

i=0

d(xn+i+1,xn+i) ≤
m−n−1
∑

i=0

αn+iβ = βαn

m−n−1
∑

i=0

αi =

βαn1− αm−n

1− α
< βαn 1

1− α
.

(3.47)

By choosing an high enough n we may make d(xm,xn) as small as we like.

This is a Cauchy sequence, which in a complete space (as Rk is) converges

to x∗. Now, sending m→ ∞ in 3.47 we have

d(x∗,xn) ≤ βαn 1

1− α
. (3.48)

We have then

d(x∗, Tx∗) ≤ d(x∗,xn+1)+d(Tx
∗,xn+1) = d(x∗,xn+1)+d(Tx

∗, Txn) ≤
2βαn+1

1− α
.

(3.49)

Again, choosing n high enough we may send the right term to zero, showing

x∗ = Tx∗. Finally, let us assume two fixed points exist, x∗ and y∗. We have

d(x∗,y∗) = d(Tx∗, Ty∗) ≤ αd(x∗,y∗) < d(x∗,y∗) ⇒ x∗ = y∗, (3.50)

which proves the theorem.

3.5 Iterative refinement

As discussed above, let us call x0 the solution obtained using Gaussian Elim-

ination for

Ax = b, (3.51)

name

r0 = b− Ax0, (3.52)

60

Numerical Linear Algebra: Norms and iterative methods

and δx0 the numerical solution of

δx0 = A−1r0 ≈ x− x0. (3.53)

Let us assume we know that

‖r0‖
‖b‖ ≪ 1, (3.54)

is it true that
‖δx0‖
‖x‖ ≪ 1 ? (3.55)

Let us first write
‖δx0‖
‖x‖ ≤ ‖A−1‖‖r0‖

‖x‖ , (3.56)

and remember

‖b‖ ≤ ‖A‖‖x‖ ⇒ 1

‖x‖ ≤ ‖A‖
‖b‖ , (3.57)

to obtain
‖δx0‖
‖x‖ ≤ ‖A−1‖‖A‖‖r0‖‖b‖ . (3.58)

We name

κ(A) = ‖A−1‖‖A‖, (3.59)

the conditioning number of A. It may be very high, as a trivial6 example

may show

A =

(

1 0

0 10−8

)

‖A‖1,2,∞ = 1 A−1 =

(

1 0

0 108

)

‖A‖1,2,∞ = 108

⇒ κ(A) = 108.

(3.60)

Eq. (3.58) shows that a high κ may be a problem.

An estimate for κ (without computing the inverse) may be obtained as

follows. If computations are performed using t digits, the following estimate

holds

‖r0‖ ≈ 10−t‖A‖‖x0‖. (3.61)

We then have, from δx0 = A−1r0,

‖δx0‖ ≤ ‖A−1‖‖r0‖ ≈ 10−t‖A−1‖‖A‖‖x0‖, (3.62)

6and obviously non-problematic from a numerical standpoint, since diagonal

61

3.5 Iterative refinement

or

‖δx0‖ ≈ 10−t‖κ(A)x0‖. (3.63)

This equation tells us that the numerical solution of a system is reliable

only if the conditioning number is considerably lower than the used computing

precision, or

κ(A) ≪ 10t. (3.64)

From eq. (3.63) we have

κ(A) ≈ 10t
‖δx0‖
‖x0‖

. (3.65)

The equation above assumes that r0 = b− Ax0 is computed using an higher

precision than the one used to solve for x0. For example, x0 may be computed

using floats (8 digits) and r0 computed using doubles (16 digits).

In general, the sequence xn+1 = xn + δxn should approach the exact

solution until precision 10−t is reached. Each iteration should improve the

solution of t − Log10κ(A), provided that κ(A)−1 > 10−t. This process is

called iterative refinement.

3.5.1 Exercise

Compute the conditioning number of the matrix

A =





1 1 1

1 −1 1

2 0 1





using the infinite norm.

Solution

Using our algorithm for matrix inversion (see Chapter 2) we find

A−1 =





−1/2 −1/2 1

1/2 −1/2 0

1 1 −1





Looking for the maximum over rows, we find ‖A‖∞ = 3, ‖A−1‖∞ = 3, and

thus κ(A) = 9.

62

Numerical Linear Algebra: Norms and iterative methods

3.5.2 Exercise

Compute the conditioning number of the matrix

A =

(

0.3601 0.4799

0.4799 0.6401

)

using the infinite norm.

Solution

Using our algorithm for matrix inversion (see Chapter 2) we find

A−1 ≈
(

3265.82 −2448.47

−2448.47 1837.24

)

Looking for the maximum over rows, we find ‖A‖∞ = 1.12, ‖A−1‖∞ ≈
5714.29, and thus κ(A) ≈ 6400.

3.6 Iterative methods

3.6.1 Jacobi method

Iterative refinement uses as first step Gaussian Elimination, a process that

would be correct if infinite information could be used, and uses iterations to

improve the numerical accuracy. For some large systems with many 0 entries,

it may be useful to use a completely iterative procedure.

As usual, our task is to solve

Ax = b, (3.66)

but this time we start from an arbitrary vector x(0). If we write eq. (3.66)

in components, we have

n
∑

i=1

aj,ixi = bj ⇒ aj,jxj +
∑

i 6=j

aj,ixi = bj ⇒ xj =
1

aj,j

(

bj −
∑

i 6=j

aj,ixi

)

.

(3.67)

The idea of the Jacobi method is to improve on the current estimate x(k)

using eq. (3.67), i.e.

x
(k+1)
j =

1

aj,j

(

bj −
∑

i 6=j

aj,ix
(k)
i

)

. (3.68)

63

3.6 Iterative methods

When does the method converge? Any square matrix may be written

as A = D + L + U . Here D is a matrix that is zero everywhere but on

the diagonal, where it has dj,j = aj,j. L is zero everywhere but under the

diagonal, where lj,i = aj,i, while U is non-zero only over the diagonal, where

lj,i = aj,i. Namely

dj,i = aj,iδj,i, (3.69)

lj,i =

{

aj,i if j > i

0 if j ≤ i
, (3.70)

uj,i =

{

aj,i if j < i

0 if j ≥ i
, (3.71)

and A = D + U + L trivially follows from the matrix addition rule7.

Eq. (3.68) may then be written in matrix form as

x(k+1) = D−1 (−L− U)x(k) +D−1b, (3.72)

as can be easily verified writing the latter equation component by component

and recalling that the inverse of a diagonal matrix is again diagonal with

d−1
jj = 1/djj. Eq. (3.72) is in the form required by the theorem of section

3.4 (D−1b being the constant term), so the procedure will converge to a fix

point if we find a matrix norm with ‖D−1 (−L− U)‖ < 1. Such a fixed point

satisfies eq. (3.67) and thus is a solution of our system.

We may easily prove that if the matric A is diagonally dominant, i.e. if

|aj,j| >
∑

i 6=j

|aj,i| ∀j, (3.73)

then the sequence converges. Let us use the ‖ ‖∞ norm. Then

[

D−1 (−L− U)
]

j,i
=

{

0 if j = i

− aj,i
aj,j

if j 6= i
. (3.74)

As a result

‖D−1 (−L− U)‖∞ = max
j

∑

i 6=j |aj,i|
|aj,j|

< 1. (3.75)

Eq. (3.48) may be used to estimate the error.

7This decomposition, based on a sum, should not be confused with the LU decompo-

sition, based on the matrix product.

64

Numerical Linear Algebra: Norms and iterative methods

3.6.2 Gauss-Seidel method and SOR

In eq. (3.68) we update the new x(k+1) vector using components of x(k), even

if the components of the new vector are available. If we try to use the new

information as soon as it is available we have the Gauss-Seidel method

x
(k+1)
j =

1

ajj

(

bj −
∑

i<j

ajix
k+1
i −

∑

i>j

ajix
(k)
i

)

. (3.76)

In matrix form

(D + L)x(k+1) = −Ux(k) + b, (3.77)

or

x(k+1) = −(D + L)−1Ux(k) + (D + L)−1b. (3.78)

It may be shown that also this method converges for diagonally dominant

matrices (it is important to notice that some matrices may be done diagonally

dominant by rearranging rows).

We may finally consider Successive Over Relaxation methods. Eq. (3.76)

may be re-written as

x
(k+1)
j =

1

ajj

(

bj −
∑

i<j

ajix
(k+1)
i −

∑

i>j

ajix
(k)
i − ajjx

(k)
i + ajjx

(k)
i

)

, (3.79)

or

x
(k+1)
j =

1

ajj

(

bj −
∑

i<j

ajix
(k+1)
i −

∑

i>j

ajix
(k)
i − ajjx

(k)
i

)

+ x
(k)
i . (3.80)

The term in the parenthesis is the residual. So the method may be generalised

to

x
(k+1)
j = ω

rj
ajj

+ x
(k)
j , (3.81)

where ω = 1 gives the Gauss-Seidel method, while ω > 1 (ω < 1) gives and

over (under) relaxation method.

3.6.3 Exercise

Starting from the seed

x0 =





0

0

0



 ,

65

3.6 Iterative methods

use the Jacobi method to find the solution of




1 2 5

0 −3 1

5 1 1



x =





8

−2

7



 .

Put the system in a form that assures convergence, perform 3 iterations and

compare to the exact result

x =





1

1

1



 .

Solution

First of all we have to put the system in a form that assures convergence.

The first row has the component of maximum modulus on the third column,

while the third row has the maximum modulus on the first column. If we

swap the first and third row (including the known terms) we have





5 1 1

0 −3 1

1 2 5



x =





7

−2

8



 .

Now the matrix is diagonally dominant, since

|5| > |1|+ |1|,

| − 3| > |0|+ |1|,
|5| > |1|+ |2|,

and we know that if

|aj,j| >
∑

i 6=j

|aj,i|

then the Jacobi method converges to the solution of

Ax = b.

The first iteration gives

x1 =





7/5

2/3

8/5



 .

66

Numerical Linear Algebra: Norms and iterative methods

The second iteration gives

x2 =





(7− 2/3− 8/5)/5

(−2− 8/5)/(−3)

(8− 7/5− 2(2/3))/5



 ≈





0.946667

1.2

1.05333



 .

The third iteration gives

x3 ≈





0.949333

1.01778

0.930667



 .

The error with respect to the correct solution is

ε =
‖x3 − x‖∞

‖x‖∞
.

We have

‖x‖∞ = 1,

and

x3 − x ≈





−0.05

0.02

−0.07



 ,

and thus

ε ≈ 0.07.

3.6.4 Exercise

Starting from the seed

x0 =





0

0

0



 .

Use the Gauss-Seidel method to find the solution of




1 2 5

0 −3 1

5 1 1



x =





8

−2

7



 .

Put the system in a form that assures convergence, perform 3 iterations and

compare to the exact result

x =





1

1

1



 .

67

3.6 Iterative methods

Solution

First of all we have to put the system in a form that assures convergence.

We proceed in the same way as for question 3.6.3. The first row has the

component of maximum modulus on the third column, while the third row

has the maximum modulus on the first column. If we swap the first and third

row (including the known terms) we have





5 1 1

0 −3 1

1 2 5



x =





7

−2

8



 .

Now the matrix is diagonally dominant, since

|5| > |1|+ |1|,

| − 3| > |0|+ |1|,
|5| > |1|+ |2|,

and we know that a theorem assures that if

|aj,j| >
∑

i 6=j

|aj,i|

then the Gauss-Seidel converges to the solution of

Ax = b.

The first iteration gives

x1 =





7/5

2/3

(8− 7/5− 2(2/3))/5 = 79/75 ≈ 1.05333



 .

The second iteration gives

x2 ≈





1.056

1.01778

0.981689



 .

The third iteration gives

x3 ≈





1.00011

0.993896

1.00242



 .

68

Numerical Linear Algebra: Norms and iterative methods

The error with respect to the correct solution is

ε =
‖x3 − x‖∞

‖x‖∞
.

We have

‖x‖∞ = 1,

and

x3 − x ≈





1 · 10−4

−6 · 10−3

2 · 10−3



 ,

and thus

ε ≈ 0.006.

69

3.6 Iterative methods

70

Chapter 4

Eigenvalues and the like

4.1 Egeinvalues and Eigenvectors: definition

“Eigen” is the German word for “proper”, “own”. By eigenvector, we mean

a vector on which a matrix acts by changing its size, but not its direction.

Namely, given a matrix A, we say that v 6= 0 is a eigenvector of A with

eigenvalue λ if

Av = λv. (4.1)

We may rewrite this as

(A− λ1)v = 0, (4.2)

where 1 is the identity matrix. From the equation above follows

det (A− λ1) = 0. (4.3)

Eq. (4.3) may be used to obtain all the eigenvalues of A. The determinant

will be written as a polynomial of order n, and its n roots (possibly with

multiplicity higher than one) will give the eigenvalues λi. Eq. (4.1) may then

be used to find the corresponding eigenvectors vi. Obviously the solution

will not be unique (as to be expected due to 4.2), since also αvi will be an

eigenvalue for arbitrary α.

4.1.1 Exercise

Let us find the eigenvalues and eigenvectors of

A =

(

5 2

2 2

)

.

71

4.1 Egeinvalues and Eigenvectors: definition

Solution

We compute

det (A− λ1) = det

(

5− λ 2

2 2− λ

)

= (λ− 6)(λ− 1).

From (4.3) we find that the eigenvalues are λ1 = 6, λ2 = 1. To solve for

the eigenvectors, we may fix the first component to an arbitrary vi1 = α, and

using the fact that only n− 1 = 1 equations of the system are independent,

we may use the first one to get

(5− λi)α + 2vi2 = 0,

and

v1 =

(

α

α/2

)

, v2 =

(

α

−2α

)

.

It may useful to get “normalised” (i.e., norm 1) vectors. For reasons that

will be clear later we may be interested in using either ‖ ‖∞ or ‖ ‖2. We have

‖v1‖∞ = |α|, ‖v2‖∞ = 2|α|, ‖v1‖2 = |α|
√
5

2
, ‖v2‖2 = |α|

√
5.

As a result, ‖ ‖∞ = 1 vectors are

v1 =

(

1
1
2

)

, v2 =

(

1
2

−1

)

,

and ‖ ‖2 = 1 vectors are

v1 =

(

2√
5
1√
5

)

, v2 =

(

1√
5

− 2√
5

)

.

That these are eigenvectors with the proper eigenvalues may be checked by

matrix multiplication.

4.1.2 The importance of complex numbers

Equation (4.3) gives a polynomial of nth order for a n square matrix. The

fundamental theorem of algebra assures that we may find n roots in the com-

plex field C. It is important to remember that roots may have an imaginary

72

Eigenvalues and the like

part even if all the entries of the matrix are real. For example, if we look for

eigenvalues of

A =

(

1
√
2

−
√
2 −1

)

, (4.4)

we find

det (A− λ1) = λ2 + 1, (4.5)

and

λ1,2 = ±i. (4.6)

The corresponding (un-normalised) eigenvectors are

v1 =

(

α

α i−1√
2

)

v2 =

(

α

−α i+1√
2

)

. (4.7)

As a consequence, the theory of eigenvalues needs considerations related to

complex numbers, matrices and vectors. Anyway, we will consider a kind of

matrices for which it may be shown that all eigenvalues and eigenvectors are

real, and our main discussion will be confined to reals. The more general

theory is to be found at the end of the chapter, section 4.7.

4.2 Scalar (inner) product

We know that

‖x‖2 =

√

√

√

√

(

∑

i

x2i

)

. (4.8)

Let us introduce a inner product

〈x,y〉 ≡
∑

i

xiyi, (4.9)

so that

‖x‖2 =
√

〈x,x〉. (4.10)

4.2.1 Geometrical meaning

You may be familiar from basic physics and geometry to the definition of a

scalar product between two vectors a and b as

a · b = |a||b| cos θ, (4.11)

73

4.2 Scalar (inner) product

θ being the angle between the two vectors. If we put the two vectors in an

arbitrary reference frame with versors ı̂, ̂ (limiting ourselves for simplicity

to the 2D case), we have

a = axı̂+ ay ̂, (4.12)

and

b = bxı̂+ by ̂. (4.13)

Calling θa the angle between a and ı̂, and θb the angle between b and ı̂, we

have the following relations (figure 4.1)

Figure 4.1: Geometrical meaning of scalar product

θ = θb − θa,

ax = |a| cos θa,
ay = |a| sin θa,
bx = |b| cos θb,
by = |b| sin θb.

(4.14)

From

cos(θa − θb) = cos θa cos θb + sin θa sin θb, (4.15)

74

Eigenvalues and the like

we get

a · b = |a||b|(cos θa cos θb + sin θa sin θb) = axbx + ayby, (4.16)

explaining the geometrical meaning of the product (4.9).

It is easy to see that the product defined by eq. (4.9) satisfies

〈a,b+ c〉 = ax(bx + cx) + ay(by + cy) = 〈a,b〉+ 〈a, c〉. (4.17)

By writing the scalar product using the explicit expressions (4.12,4.13), the

linear property (4.17) and comparing to the result (4.16) we get

〈̂ı, ı̂〉 = 〈̂, ̂〉 = 1, (4.18)

and

〈̂ı, ̂〉 = 〈̂, ı̂〉 = 0. (4.19)

The vectors ı̂ and ̂ are a orthonormal set. Their norm is 1, and they are

reciprocally orthogonal (or perpendicular),

〈x,y〉 = 0. (4.20)

The product of two non zero vectors may thus be zero, and in this case the

vectors are said to be orthogonal. The geometrical meaning of this statement

should be obvious from eq. (4.11) and it should not be surprising that applies

to Cartesian unit vectors.

4.2.2 Formal definition

The inner product on vectors in Rn is an application from a pair of vectors

to the real field, i.e. 〈x,y〉 ∈ R satisfying the following properties:

〈x,y〉 = 〈y,x〉, (4.21)

〈x, αy〉 = α〈y,x〉, α ∈ R, (4.22)

〈x,y + z〉 = 〈x,y〉+ 〈x, z〉, (4.23)

〈x,x〉 ≥ 0, with 〈x,x〉 = 0 ⇔ x = 0. (4.24)

It is easily verified that eq. (4.9) satisfies the formal inner product properties.

75

4.3 Adjoint and transpose

4.2.3 Proof that an inner product defines a norm

The formal definition of a norm was introduced in 3.2.2. If we define

‖x‖ =
√

〈x,x〉, (4.25)

we clearly have

‖x‖ ≥ 0, (4.26)

‖x‖ = 0 ⇔ x = 0, (4.27)

and

‖αx‖ =
√

〈αx, αx〉 =
√

α2〈x,x〉 = |α|
√

〈x,x〉 = |α|‖x‖. (4.28)

To show that

‖x+ y‖ ≤ ‖x‖+ ‖y‖, (4.29)

is more tricky. Since the norm is positive, we may equivalently show

(‖x+ y‖)2 ≤ (‖x‖+ ‖y‖)2 . (4.30)

For the right hand side we have

‖x‖2 + ‖y‖2 + 2‖x‖‖y‖. (4.31)

For the left side, we write

(‖x+ y‖)2 = 〈x+ y,x+ y〉 = ‖x‖2 + ‖y‖2 + 〈x,y〉+ 〈y,x〉
≤ ‖x‖2 + ‖y‖2 + 2|〈x,y〉|

(4.32)

From the geometrical interpretation of the inner product, you may expect

that

|〈x,y〉| ≤ ‖x‖‖y‖, (4.33)

and thus the triangular inequality holds. For the proof, you may see section

4.7.2.

4.3 Adjoint and transpose

Let us now consider matrices and write

〈Ax,y〉. (4.34)

76

Eigenvalues and the like

By components, we have

〈Ax,y〉 =
∑

j

(Ax)j (y)j =
∑

j

(

∑

i

Aj,ixi

)

yj. (4.35)

This may be rewritten as
∑

j,i

Aj,ixiyj. (4.36)

Now, inside the sum, all matrix and vector components are just numbers,

and we may re-arrange them as

∑

j,i

xiAj,iyj =
∑

j,i,l

xiA
T
i,jyj, (4.37)

where we have used the definition of transpose matrix,

AT
j,i = Ai,j. (4.38)

We have finally

〈Ax,y〉 =
∑

i

(

∑

i

xiA
T
i,jyj

)

= 〈x, ATy〉. (4.39)

Before moving a matrix from the right to the left side of the inner product,

we have to take its transpose. In general we say that if

〈Ax,y〉 = 〈x, A†y〉, (4.40)

A† is the adjoint of A. For real matrices, we have A† = AT .

As a consequence, we have

〈ABx,y〉 = 〈Bx, A†y〉 = 〈x, B†A†y〉. (4.41)

This means that

(AB)T = (AB)† = B†A† = BTAT . (4.42)

The relation for the transpose may be shown directly

(AB)Tj,i = (AB)i,j =
∑

l

Ai,lBl,j =
∑

l

AT
l,iB

T
j,l =

∑

l

BT
j,lA

T
l,i = (BTAT)j,i.

(4.43)

77

4.4 Orthogonal matrix and change of basis

4.4 Orthogonal matrix and change of basis

Let us consider a matrix O such that OT = O−1. Such a matrix is said to be

orthogonal, and satisfies

∑

l

Ol,jOl,i =
∑

l

OT
j,lOl,i = δj,i. (4.44)

This means that if we consider a set of vectors vi given by the columns of

O, we have

〈vi,vj〉 = δi,j , (4.45)

i.e., the columns of O are given by orthonormal vectors. In the same way

∑

l

Oj,lOi,l =
∑

l

Oj,lO
T
l,i = δj,i, (4.46)

so that also the rows of O are orthonormal vectors.

Since O has an inverse, its rows and columns are independent, and they

are n. They form thus a base for the vector space Rn, meaning that any

x ∈ Rn may be written as

x =
∑

k

χkv
k, (4.47)

or, in components,

xi =
∑

k

χkv
k
i . (4.48)

Since the vectors are orthonormal (eq. 4.45) given a vector

y =
∑

k

ψkv
k, (4.49)

we have

〈x,y〉 =
∑

k

χkψk, (4.50)

which resembles eq. (4.9) in the new “components”.

Defining vk
i = Ok,i, i.e. considering the rows of O as the independent

vectors, eq. (4.48) becomes

xi =
∑

k

OT
i,kχk. (4.51)

78

Eigenvalues and the like

Multiplying both sides by O we get

∑

i

Oj,ixi =
∑

i,k

Oj,iO
T
i,kχk =

∑

k

(

∑

i

Oj,iO
T
i,k

)

χk =
∑

k

δj,kχk, (4.52)

or

χj =
∑

k

Oj,ixi. (4.53)

We thus have that the matrix O operates a “change of basis”, from our usual

basis to a new one based on the vectors given by the rows of O. OT operates

the reverse change, going from the new basis to the original one.

From the properties of the determinant

det(AT) = det(A), det(AB) = det(A) det(B), (4.54)

we get

det(1) = det(OTO) = (det(O))2 ⇒ det(O) = ±1. (4.55)

4.5 Symmetric matrices

A matrix is symmetric if AT = A, or

Aj,i = Ai,j. (4.56)

As it is shown in eq. (4.116), a symmetric matrix has real eigenvalues. Fur-

thermore, if v1 and v2 are eigenvectors corresponding to different eigenvalues

λ1 6= λ2, they are orthogonal, 〈v1,v2〉 = 0. To prove it we write

λ1〈v2,v1〉 = 〈v2, λ1v
1〉 = 〈v2, Av1〉 = 〈A†v2,v1〉 = 〈Av2,v1〉

= 〈λ2v2,v1〉 = λ2〈v2,v1〉,
(4.57)

thus

(λ2 − λ1)〈v1,v2〉 = 0. (4.58)

Since the eigenvalues are different, we necessarily have 〈v1,v2〉 = 0. If A has

n different eigenvalues, the corresponding eigenvectors are thus orthogonal

〈vi,vj〉 = δi,j‖vj‖2. (4.59)

They are also necessarily independent, since if

vj =
∑

i 6=j

αiv
i, (4.60)

79

4.5 Symmetric matrices

with at least a αk 6= 0, we have

〈vj,vk〉 = αk‖vk‖2, (4.61)

leading to a contradiction. It may be shown that even if the matrix has

independent eigenvectors corresponding to the same eigenvalue, a basis of

n linearly independent eigenvetors may always be found1. By dividing such

vectors by their norm, eq. (4.59) may be simplified to

〈vi,vj〉 = δi,j . (4.62)

The eigenvectors form thus a orthonormal basis, and the orthogonal matrix

Oj,i = vji may be constructed.

4.5.1 Matrix diagonalisation

As discussed above (eq. 4.48), given the orthonormal basis of eigenvectors

we may write for each x

xi =
∑

k

χkv
k
i , (4.63)

from which follows (eqs. 4.51, 4.53)

xi =
∑

k

OT
i,kχk χj =

∑

k

Oj,ixi. (4.64)

We also recall that, from Avk = λkv
k we have

∑

i

Aj,iOk,i =
∑

i

Aj,iv
k
i = λkv

k
j . (4.65)

Using the usual index manipulation we get

(Ax)j =
∑

l

Aj,lxl =
∑

l,k

Aj,lO
T
l,kχk =

∑

l,k,i

Aj,lO
T
l,kOk,ixi =

∑

l,k,i

Aj,lv
k
l Ok,ixi =

∑

k,i

λkv
k
jOk,ixi =

∑

l,k,i

vljλlδl,kOk,ixi =
∑

l,k,i

OT
j,lλlδl,kOk,ixi = (OTDOx)j,

(4.66)

1The physicists’ trick to show that is to add a small perturbation to the matrix so that

the symmetry is broken and the basis is present (all eigenvalues different), and then send

the perturbation to zero.

80

Eigenvalues and the like

or

A = OTDO, (4.67)

where D is a diagonal matrix with entries Dj,i = λiδj,i

D =

















λ1 0 0

0 λ2 0 . . . 0
... 0 λ3 0

...
...

...
.

...

0 0 λn

















(4.68)

The meaning should be clear. O brings us to a basis in which A acts

diagonally, and OT brings us back to the original one2.

4.5.2 Example

Diagonalise

A =

(

5 2

2 2

)

. (4.69)

From 4.1.1, where we found the orthonormal (check!) eigenvectors, we have

A =

(

2√
5

1√
5

1√
5

− 2√
5

)

(

6 0

0 1

)

(

2√
5

1√
5

1√
5

− 2√
5

)

. (4.70)

4.5.3 Determinant and trace of symmetric matrices

From the rule for the product of determinants and eq. (4.55) we find

det(A) = det(OTDO) = det(OT) det(O) det(D) =
∏

i

λi. (4.71)

The trace of a matrix is defined as

Tr(A) =
∑

i

Aii. (4.72)

We have

Tr(AB) =
∑

i

∑

j

Ai,jBj,i =
∑

j

∑

i

Bj,iAi,j = Tr(BA). (4.73)

2D and A are two different representations of the same linear operator. The Bra-Ket

formalism, itroduced by the British Physicist and Noble Prize Paul Dirac, is very useful

to handle all the linear algebra computations.

81

4.6 Power method to find numerically eigenvalues and vectors

Thus

Tr(A) = Tr(OTDO) = Tr(OOTD) = Tr(D) =
∑

i

λi. (4.74)

These results may also be used to check if the diagonalisation process was

performed in a correct way.

4.6 Power method to find numerically eigen-

values and vectors

4.6.1 Theory

We now see an algorithm to compute numerically eigenvectors and eigen-

values. Let us assume that our matrix has n orthonormal real eigenvectors,

as it would be the case for a symmetric one. We also assume that it has n

different modulus eigenvalues λk, i.e. that there are no 2 eigenvalues such

that |λi| = |λk| if i 6= k. Let us then list the eigenvalues starting from the

higher modulus value, i.e. |λk| > |λi| if k < i. The corresponding normalised

vectors will be vk.

We know that for each x we may write

x =
∑

k

αkv
k (4.75)

For simplicity’s sake, let us assume αk 6= 0 ∀k (we will generalise later). Let

us apply An (i.e., n times A) to x, and obtain the normalised vector

Anx

‖Anx‖ (4.76)

This may be written as

An(
∑

k αkv
k)

‖Anx‖ =

∑

k αkA
nvk

‖Anx‖ =

∑

k αkλ
n
kv

k

‖Anx‖ =
λn1

‖Anx‖

(

α1v
1 +

n
∑

k=2

αk

(

λk
λ1

)n

vk

)

(4.77)

Since we have

lim
n→0

(

λk
λ1

)n

= 0 ∀k 6= 1 (4.78)

we obtain

lim
n→0

Anx

‖Anx‖ =
λn1α1

‖Anx‖v
1 = ±v1 (4.79)

82

Eigenvalues and the like

The last equation is due to the fact that the resulting vector is normalised

to one and parallel to v1, which for a real vector means that it is either v1 or

−v1. In the second case we may just rename −v1 as v1. Now that we know

(with a sufficient good approximation for high enough n) v1, we obtain λ1
from

λ1 =
(Av1)j
v1
j

(4.80)

for any component j.

We may now proceed and look for λ2. Let us first compute

〈x,v1〉 (4.81)

i.e., the scalar product between two known vectors. This is equal to
〈

∑

k

αkv
k,v1

〉

=
∑

k

αk〈vk,v1〉 =
∑

k

αkδ1,k = α1 (4.82)

Thus,

x2 ≡ x− 〈x,v1〉v1 =
n
∑

k=2

αkv
k (4.83)

It should now be obvious that

lim
n→0

Anx2

‖Anx2‖
= ±v2 (4.84)

In the same way, after we have found vk for all k < j we may define

xj ≡ x−
j−1
∑

k=1

〈x,vk〉vk =
n
∑

k=j

αkv
k (4.85)

and we have

lim
n→0

Anxj

‖Anxj‖
= ±vj (4.86)

A special treatment has to be done only for λj = 0, since in this case

Axj is 0, and not parallel to vj. Anyway, this case may be trivially handled

by checking that ‖Axj‖ is zero for a non-zero ‖xj‖, so that the latter is an

eigenvector of λ = 0.

At the beginning of this discussion we assumed αk 6= 0 for all k. This will

not be the case in general. Anyway, since {vk} is a basis, we will have some

αk 6= 0, and thus we will identify, starting from an arbitrary x 6= 0, a subset

83

4.6 Power method to find numerically eigenvalues and vectors

j < n of our basis of eigenvectors, vi with i ≤ j. We know another basis of

Rn, namely the Cartesian one ei with eij = δi,j. It is clear that we cannot

have

ei −
j
∑

k=1

〈ei,vk〉vk = 0 (4.87)

otherwise each element of the basis would be written as a linear combination

of the vk with k < j, so that this j < n vectors would be a basis of Rn,

leading to a contradiction. Thus by trying different elements of the Cartesian

basis we may apply the procedure again until we eventually find the whole

eigenvector basis.

What happens if the matrix has eigenvalues with the same module, |λi| =
|λj| for i 6= j? Two cases are possible. If the two eigenvalues are actually

the same, i.e. if we have 2 or more independent eigenvectors with the same

eigenvalue, the procedure will converge without problem. Let us assume for

example λ1 = λ2 = λ. We have

lim
n→0

Anxj

‖Anxj‖
=
α1v

1 + α2v
2

√

α2
1 + α2

2

(4.88)

This is a legit eigenvector with eigenvalue λ. Our procedure will eventually

lead to another eigenvector for the 2D subspace corresponding to λ, that in

the original (but unknown) basis vi would be

±α2v
1 − α1v

2

√

α2
1 + α2

2

vj (4.89)

(to be orthonormal to the first). The same situation applies to a more general

l dimensional subspace corresponding to the eigenvalue λ. Our procedure cor-

rectly converges to a basis if the eiegnvalues with equal modulus are actually

the same eigenvalue.

But if the two eigenvalues are actually different, as for example λ1 = −λ2,
we have then

lim
n→0

Anxj

‖Anxj‖
=
α1v

1(−)nα2v
2

√

α2
1 + α2

2

(4.90)

which clearly does not converge.

We may nevertheless use the power method to study the spectrum (eigen-

value set) of any A in the following way. The matrix A2 is symmetric and

has eigenvalues λ2i > 0. The procedure above will converge on A2, being

84

Eigenvalues and the like

all eigenvalues positive, so that we may find all possible eigenvalues of A in

the form ±λi. If then the procedure does not converge for A, it means both

positive and negative values were present.

4.6.2 Practice

A few precautions have to be taken before numerically applying the proce-

dure. The limit for n → ∞ will obviously replaced with a computation for

finite n. The normalisation will be performed at each step, and the difference

between two iterations
∥

∥

∥

∥

Anx

‖Anx‖ − An−1x

‖An−1x‖

∥

∥

∥

∥

(4.91)

computed to check iteration. While the norm 2 is necessary for the scalar

product, at each step the normalisation may be done using the infinite norm,

reducing both numerical cost and rounding due to the computation of square

roots.

Furthermore, the subtraction of the orthogonal components eq. (4.85)

should be computed at each step, otherwise the errors due to round off could

easily propagate.

The convergence of the process relating the λk eigenvalue depends on the

ratio |λk/λk+1|, so that if these two number are very similar in modulus we

will have a slow convergence.

4.6.3 Exercise

Starting from the seed

x0 =

(

1

0

)

Use the power method to find the highest modulus eigenvalue of the matrix

A =

(

5 2

2 2

)

and the corresponding eigenvalue. Stop after 4 iterations, and compare to

the exact value.

85

4.6 Power method to find numerically eigenvalues and vectors

4.6.4 Solution

The exact value has been found in section 4.1.1. Since the matrix has eigen-

values with different modulus, we know that the method will converge. In

the first iteration we compute

y1 = Ax0 =

(

5 2

2 2

)(

1

0

)

=

(

5

2

)

Dividing the maximum modulus component of y1 by the maximum modulus

component of x0 we get the first estimate for λ

λ1 = 5

Normalising to infinite norm 1 (i.e. dividing each component of y1 by its

maximum modulus component) we obtain

x1 =

(

1

2/5

)

The second iteration gives

y2 = Ax1 =

(

29/5

14/5

)

λ2 = 29/5

and

x2 ≈
(

1

0.482759

)

The third iteration gives

y3 = Ax2 ≈
(

5.96552

2.96552

)

λ3 ≈ 5.96552

and

x3 ≈
(

1

0.49711

)

The fourth iteration gives

y4 = Ax3 ≈
(

5.99422

2.99422

)

86

Eigenvalues and the like

λ4 ≈ 5.99422

and

x4 ≈
(

1

0.499518

)

After 4 iterations, the error on the eigenvalue with respect to the exact

result 6 is

|λ4 − 6| ≈ 6 · 10−3

with a relative error of
|λ4 − λ+|

6
≈ 10−3

The error on the eigenvector is

‖x4 − v6‖∞ ≈ 5 · 10−4

Since the vectors are normalised to 1, this is also the relative error. In the 2

dimensional case, the other eigenvector may be simply (numerically) found

by requiring orthogonality, namely

±
(

0.499518

−1

)

4.7 Complex vectors and matrices

4.7.1 Inner product

Let us consider the vector space Cn (vector with complex components). If

we were to define the 2 norm on the space as

‖x‖2 =

√

√

√

√

(

∑

i

x2i

)

. (4.92)

we would face a problem. If c = α+ iβ, we have c2 = α2 − β2 + 2iαβ, which

may be not positive (for example for c = i). On the opposite, remembering

the definition of complex conjugate c = α− iβ, we have

|c| ≡ cc = α2 + β2. (4.93)

87

4.7 Complex vectors and matrices

To obtain the correct form of the 2 norm we thus define the scalar product

on Cn as3

〈x,y〉 ≡
∑

i

xiyi. (4.94)

Formally, the product on a complex space satisfies

〈x,y〉 = 〈y,x〉, (4.95)

〈x, αy〉 = α〈y,x〉, α ∈ C, (4.96)

〈x,y + z〉 = 〈x,y〉+ 〈x, z〉, (4.97)

〈x,x〉 ≥ 0, with 〈x,x〉 = 0 ⇔ x = 0. (4.98)

From these properties derives that

〈αx,y〉 = 〈y, αx〉 = α〈y,x〉 = α〈y,x〉, (4.99)

and thus

〈αx,y〉 = α〈x,y〉. (4.100)

It is easy to verify that eq. (4.94) satisfies the above properties. In particular

〈y,x〉 =
∑

i

yixi =
∑

i

yixi = 〈x,y〉. (4.101)

4.7.2 Norm from inner product and Cauchy-Schwartz

inequality

The proof follows the one for the real case, taking in account that

‖αx‖ =
√

〈αx, αx〉 =
√

α〈αx,x〉 =
√

αα〈x,x〉 = |α|‖x‖. (4.102)

We may prove explicitly the Cauchy-Schwartz inequality that leads to the

triangular one, namely

|〈x,y〉| ≤ ‖x‖‖y‖. (4.103)

If y = 0 the inequality is true. Let assume y 6= 0. We may then subtract to

x its projection along y

xy = x− 〈y,x〉
‖y‖2 y. (4.104)

3Some authors prefer
∑

i
xiyi

88

Eigenvalues and the like

Now (it is basically Pythagoras’s theorem for 2 orthogonal components)

0 ≤ ‖xy‖2 = 〈xy,xy〉 = ‖x‖2 + |〈y,x〉|2
‖y‖2 − 2

〈y,x〉〈x,y〉
‖y‖2 , (4.105)

from which we have

‖x‖2 − |〈y,x〉|2
‖y‖2 ≥ 0, (4.106)

and finally

‖x‖2‖y‖2 ≥ |〈y,x〉|2. (4.107)

4.7.3 Adjoint

Let us write

〈Ax,y〉. (4.108)

By components, we have

〈Ax,y〉 =
∑

j

(Ax)j (y)j =
∑

j

(

∑

i

Aj,ixi

)

yj =
∑

j,i

xiAj,iyj =
∑

j,i,l

xiAT
i,jyj.

(4.109)

For complex matrices, the adjoint operator is thus given by the complex

conjugate of the transpose,

A†
j,i = Ai,j. (4.110)

Again we have

〈ABx,y〉 = 〈Bx, A†y〉 = 〈x, B†A†y〉, (4.111)

or

(AB)† = B†A†. (4.112)

4.7.4 Unitary matrix

Everything we said about the orthogonal matrices applies in the complex

case to unitary ones, i.e. matrices with U † = U−1. For them we have

∑

l

Uj,lUi,l, (4.113)

so that the rows may be again considered as orthonormal vectors and thus a

basis, and so on.

89

4.7 Complex vectors and matrices

4.7.5 Hermitian matrices

A matrix is Hermitian if it is its own adjoint, A† = A or

Ai,j = Aj,i. (4.114)

A real symmetric matrix is thus Hermitian. It is easy to show that an

Hermitian matrix has real eigenvalues. Let us assume

Av = λv. (4.115)

We have then

λ〈v,v〉 = 〈v, λv〉 = 〈v, Av〉 = 〈A†v,v〉 = 〈Av,v〉 = 〈λv,v〉 = λ〈v,v〉,
(4.116)

from which we obtain λ = λ.

The discussion leading to eq. (4.57) is not changed for Hermitian ma-

trices. Furthermore, it may be shown that also in the case of Hermitian

matrices we have a basis of orthonormal vectors, that may be used to build

a unitary matrix an diagonalise the matrix A = U−1DU . The results for

determinant and trace follow.

90

Chapter 5

Non linear equations

When dealing with linear equations, our task has been the one of generalising

the trivial n = 1 situation

ax = b⇒ x =
b

a
, (5.1)

to the general finite n case

Ax = b⇒ x = A−1b if det(A) 6= 0. (5.2)

In the process, we developed algorithms to solve such a mathematical prob-

lem (which in general do not involve computing the inverse matrix, whose

importance is more in the development of the theory than in specific com-

putations).

What about non linear equations? They are actually already not trivial

in the 1D case, and it is hard to find a one size fits all method that solves any

problem. Knowledge of the nature of the problem itself will be needed, and

since in general for each method we have a trade-off between generality (i.e.,

ability to be applied to any problem) and precision, a mixed approach is often

needed. In these notes we will just give a short introduction to some n = 1

methods, and then spend a few words on their generalisation to arbitrary

finite n.

5.1 n = 1

In a n = 1 linear equation only terms like ax and b could enter, so we wrote

ax = b. Now these terms generalise to arbitrary functions

g(x) = h(x) ⇒ f(x) ≡ g(x)− h(x) = 0, (5.3)

91

5.1 n = 1

so that we may express a non-linear equation as f(x) = 0 without loss of

generality. How do we handle them?

In particular for a single variable function, the first step is always to try

to study it analytically. Let us consider

f(x) ≡ ex − sin x = 0, (5.4)

or ex = sin x. We know that | sin x| ≤ 1 ∀x, and ex > 1 for x > 0, so the

equation has no solutions for x > 0. x = 0 is not a solution either, since

e0 = 1 and sin 0 = 0. We also know that ex > 0 ∀x, and ex < 1 for x < 0.

Since sin x ≤ 0 if x ∈ [−2nπ, (−2n− 1)π], n ∈ N, again we cannot have any

solution in these intervals. Now for some positive result: we have sin x = 1,

and thus f(x) < 0, in x = (−2n − 3/2)π. Since f(x) is continuous, and

f(x) > 0 in the zeros of sin x, we have a solution (exactly one, since the two

functions are monotone in such intervals) in each of the following intervals

(

(−2n− 1)π, (−2n− 3/2)π
) (

(−2n− 3/2)π, (−2n− 2)π
)

. (5.5)

Furthermore, since limx→−∞ ex = 0, in the limit of large n the solutions will

be located in −nπ. (See figure 5.1.)

In this way we already obtained an information that would not be avail-

able to any numerical procedure, i.e. the existence of an infinity of solutions!

Anyway, if we want to know, for example, with a given approximation where

the solution with maximum x is located, we need to rely on numerical meth-

ods. Still, these methods will need a starting point, or a starting interval,

and this may be chosen based on our analytical results.

5.1.1 “Monte Carlo” simulations

Before proceeding to examine the numerical methods to solve non-linear

equations, we may wonder what can we do if we are not able to study the

analytical properties of the function. In this situation, we will choose an

interval of interest [a, b] on which we want to study our function1. An example

for our function is shown below in Figure 5.1.

1Since it is impossible to numerically compute the function on the whole R. Assuming

we have computational time to evaluate our function on N points, we define h = (b −
a)/(N − 1), and compute the function in f(a+ ih), i = 0, . . . , N − 1.

92

Non linear equations

-9.4248 -6.2832 -3.1416 0
-1

0

1

Figure 5.1: ex in blue, sin x in red, ex − sin x in green

To know the behaviour of a function f(x), where x ∈ Rn, we would need

to compute f on a grid

f(x1 + i1h1, . . . , xj + ijhj, . . . , xn + inhn), (5.6)

where possibly the grid is un-even, hk 6= hj if j 6= k, and the index ij
assumes values in 1, . . . ,Mj If we use a regular grid, and divide the interval

corresponding to each variable byM , we get to evaluate the functionN =Mn

times. As a result, for large n (i.e. in a large configuration space), N has to

be small, and the grid is extremely sparse. In this situation, it may be better

to evaluate the function in random points2. Such a method, which may be

used for example to evaluate multi dimensional integrals, is called “Monte

Carlo”3.

2More exactly, pseudo random points
3Since it relies on chance, like playing in a Casino. Nevertheless, since it may be shown

that the fluctuations behave as 1/
√
N , the method becomes reliable for large enough N .

93

5.1 n = 1

5.1.2 Bisection method

Let us suppose that we know, by analytical or “Monte Carlo” methods, that

the function f(x) changes of sign between two points a and b, i.e.

f(a)f(b) < 0. (5.7)

If we know or assume that the function is continuous, then we have a solution

of f(x) = 0 in (a, b). We may use the bisection method to compute such a

solution with the desired precision.

Let us call x the point half the way between a and b, x = a + (b− a)/2.

We compute f(x) and check if f(x)f(a) < 0. In such case the solution (or at

least a solution) is located between x and a, and we can set a1 = a, b1 = x,

and compute x1 = a1+(b1−a1)/2. On the other end, if we had f(x)f(a) = 0,

then x is a solution and our method converged. Finally, if f(x)f(a) > 0, then

f(x)f(b) < 0, so we may set a1 = x, b1 = b and proceed (Figure 5.2). At

each step we localise an interval of length (b − a)/2n in which a solution is

located (our original interval may have contained more possible solutions,

and the algorithm converges to one of them). If we want a precision ε then

(assuming b > a)

log2(b− a)− n < log2(ε) ⇒ n > log2(b− a)− log2(ε). (5.8)

The method may also be called “binary” since assuming at a given step we

have in binary notation bn−an = 10000 . . . 0000 then at the following step we

will have bn+1 − an+1 = 01000 . . . 0000, and so on. As a result, in a few tens

iterations, the machine precision concerning the root position is reached.

5.1.3 Secant method

But we can do better, since in the bisection method we did not even use

the value of the function in a and b. The secant method assumes that the

solution may be found close to the intercept between the line passing for

(a, f(a)) and (b, f(b)) and the x axis (Figure 5.2). Let us write the equation

of the line

y = f(a) +
f(b)− f(a)

b− a
(x− a), (5.9)

so that asking y = 0 we get

x = a− f(a)
b− a

f(b)− f(a)
. (5.10)

94

Non linear equations

Figure 5.2: Black crosses give the first two iterations of the bisection method,

green circles the first two iterations of the secant method. The red square is

the first iteration of the Newton method from b. From a the Newton method

does not converge.

The computation of x is the only difference between the bisection and secant

method. After obtaining x we check for the sign of f(x)f(a) and proceed as

before. The method converges again to one of the solutions located in the

interval (a, b), but in general it converges faster.

5.1.4 Newton’s method

The secant method improves on the bisection one by using the value of the

function. We may think that, in particular if we are close to the solution, a

further improvement may be obtained by using also the function’s variation,

i.e. its derivative. Let us b→ a in eq. (5.10), or if you prefer define h ≡ b−a,
b = a+ h, h→ 0 and obtain

x = a− f(a)

f ′(a)
. (5.11)

95

5.1 n = 1

While before we used an interval to find a solution, now a starting point

is enough, and it will give us a sequence

xn = g(xn−1) g(x) = x− f(x)

f ′(x)
. (5.12)

Clearly a solution of f(x) = 0 is also a fixed point for g(x). Figure 5.2

gives an idea of how effective the method may be if we start close enough to

the solution. Indeed for our problem, using b = −π, a = −3/2π, with the

bisection method we need 10 iterations to get |f(x)| < 10−4, while with the

secant method at the third iteration we have |f(x)| < 10−7. Using Newton

from b, we get |f(x)| < 10−15 in only 3 iterations.

But this comes at a cost. While the previous methods knew that a so-

lution was present and always converged to it, the Newton method will not

converge in general, as shown in figure 5.2. Indeed, if we chose to apply

Newton’s method from −3/2π, the method would not have converged.

Newton’s method may then be used to refine a solution selected with

another method, such as the secant one. Another possibility may be to

do a Monte Carlo search for possible Newton starting points, and stop the

iteration process if the method is not converging (i.e. if the function absolute

value does not decrease).

Newton’s method with numerical derivative

The derivative in eq. (5.11) may be also computed numerically, as

f ′(x) ≈ f(x+ h)− f(x)

h
. (5.13)

Using h = 10−8 and 16 digit precision, we find again |f(x)| < 10−15 in only

3 iterations for ex − sin x starting from −π.

A theorem for the convergence of Newton’s method

We have seen in the lecture on iterative methods (sec. 3.4) that if in a metric

space we have d(Tx, Ty) < d(x,y), the sequence converges to the only fixed

point of T .

Let us consider on R a function g(x) with |g′(x)| ≤ α < 1. We have using

96

Non linear equations

a basic calculus theorem4

|g(y)− g(x)| = |g(x) + g′(x+ ξ(y − x))(y − x)− g(x)|
≤ |g′(x+ ξ(y − x))||y − x| < |y − x|,

(5.14)

where 0 ≤ ξ ≤ 1.

For the Newton method we have, assuming f , f ′ and f ′′ to be continuous,

f(x) = 0 and f ′(x) 6= 0

g′(x) =
f(x)f ′′(x)

(f ′(x))2
(5.15)

If x is such as f(x) = 0, then g′(x) = 0. Being g continuous, we have a

neighbourhood of x in which |g′(x)| < 1. If we apply g to a point in the

neighbour, we obtain y = g(x), with

|y − x| = |g(x)− g(x)| < |x− x|. (5.16)

g is thus an application on the neighbourhood, and the theorem applies.

5.2 Non linear systems

Let us suppose to have n non linear equations in n variables, such as

f1(x1, . . . , xn) = f1(x) = 0,

...,

fi(x1, . . . , xn) = fi(x) = 0,

...,

fn(x1, . . . , xn) = fn(x) = 0.

(5.17)

This may be rewritten by considering the fi as components of a vector F

(i.e., F is from Rn to Rn), and write

F(x) = 0. (5.18)

Considering the Jacobian matrix J(x),

J(x)j,i =
∂fj
∂xi

, (5.19)

4Lagrange’s formula or Mean Value Theorem.

97

5.2 Non linear systems

we may generalise eq. 5.11 to the n dimensional case by writing

xn+1 = xn − J−1(xn)F(xn). (5.20)

The matrix J and function F will be computed at any xn. There is no need to

compute the inverse of the Jacobian; since we know that inverse computation

is time consuming with respect to the solution of a system, we may define

y = J−1(x)F(x), (5.21)

solve the system

J(x)y = F(x), (5.22)

and compute

xn+1 = xn − yn. (5.23)

The techniques used for solving linear algebra problems (i.e., Gaussian

Elimination) find thus an application in the non-linear problems.

98

Chapter 6

Practice exercises

1. Exercise

(a) Write explicitly the following matrices in the 5×5 case (j = 1, ..., 5;

i = 1, ..., 5)

i. aj,i = i+ j2

ii. aj,i =
1
ij

iii. aj,i = iδj,i) + 2δj,i−2 + 3jδj,i+1

iv. aj,i = δj,(i2−3i−1)

Here δ is the Kronecker symbol (see also notes online).

(b) Which of these matrices is symmetrical aT = a and why you could

tell that without any computation?

2. Exercise Consider the matrix aj,i =
√
j δj,i−1.

(a) Compute the transpose matrix aT , the matrix N = aTa and the

commutator [a, aT] ≡ aaT − aTa. Here we have i, j ∈ N i.e. they

may assume any positive value (infinite matrix). Anyway, if you

are not able to manage the symbolic sums, you may help yourself

using a finite example, and then generalise.

99

(b) Particle physicists call a vector





















0

0

0

α

0
...





















= |3 >

i.e. a vector with all entries equal to 0 except the fourth (and

regardless of the explicit value of α 6= 0) a “3 particle state”, i.e.

a physical state with 3 particles. In general, a n particle state has

only the (n+ 1)th entry as non-zero

|n > has components xj = αδn,j−1

They also call the matrix a a particle annihilator, aT a particle

creator, and the matrix N the “particle number”. Do you under-

stand why?

3. Exercise Consider the matrices

Jz =





1 0 0

0 0 0

0 0 −1



 Jx =







0 1√
2

0
1√
2

0 1√
2

0 1√
2

0






Jy =







0 −i√
2

0
i√
2

0 −i√
2

0 i√
2

0







where i is the imaginary unit i2 = −1.

(a) Compute the matrix given by the commutators [Jx, Jy] ≡ JxJy −
JyJx, [Jx, Jz], [Jy, Jz] and write the results as a function of the J

matrices (i.e., [Jx, Jy] = αJx+βJy+γJz. Hint: the result should be

trivial, i.e. the commutator of two matrices gives another matrix

multiplied by a constant).

(b) Compute the matrix J2 = JxJx+JyJy+JzJz. Then write down the

commutators [J2, Jx], [J
2, Jy], [J

2, Jz]. You should be able to do

the commutator part by glance, i.e. without any computation...1

1Also this matrices are important in Quantum Physics. They represent angular mo-

mentum in a spin 1 system.

100

Practice exercises

4. Exercise Compute the determinant of the following matrices

A1 =











−2 1 −1 7

−1 4 1 1

5 2 0 1

2 3 6 0











A2 =











2 1/2 1/3 0

1 4 0 1

1/10 1/20 1 1/2

1 1 1 7/2











A3 =











−1 0 2 0

1 1 5 1

3 0 0 1

2 −1 1 4











A4 =











3 2 1 0

1 1 0 0

4 0 1 2

0 9 0 −6











A5 =











2 1 1 1

2 1 −1 −1

1 2 0 1

1 3 5 2











5. Exercise If possible, invert the matrices at the previous point. If not

possible, explain why. Check if the result is correct in each case.

6. Exercise Write the ‖ ‖∞ norm for each of the matrices above, and

compute the conditioning number κ(A) = ‖A‖∞‖A−1‖∞

7. Exercise

(a) Perform the A = LU decomposition for all matrices above. If the

matrix may not be written in the LU form, write it as PA = LU

using the proper permutation matrix.

(b) For each matrix, write P−1, and check that A = P−1LU

101

8. Exercise Given

b1 =











21

5

10

−1











b2 =











23/6

6

0.85

−12











b3 =











6

12

−2

−4











b5 =











5/4

5/4

0

17/4











solve the systems A1x1 = b1, A2x2 = b2, A3x3 = b3, A5x5 = b5 using

partial scaled pivoting. Check the results.

9. Exercise For each of the systems above, write permutation matrices

that would allow you to solve the systems PAx = Pb using partial

scaled pivoting without row swaps, and the corresponding inverse ma-

trices P−1.

10. Exercise Solve the systems above using LU decomposition.

11. Exercise Solve the systems above using the inverse matrix.

12. Exercise In case it may be theoretically proved that one of the systems

above may be solved using the Jacobi method, perform a few iterations

starting with the seed vector x0 of your choice. Use the infinite norm to

compute at each step the approximate error ‖xn−xn−1‖
‖xn‖ , and the actual

error ‖x−xn−1‖
‖x‖ . (Hints: the exact solution is known by the exercises

above; row manipulation may be necessary before applying the Jacobi

method).

102

Practice exercises

13. Exercise Repeat the point above for the Gauss-Seidel method.

14. Exercise

(a) Write the exact solution for the eigenvalues and (normalised) eigen-

vectors of the following matrices.

A1 =

(

2 1

1 1

)

A2 =

(

1 1

1 −1

)

A3 =

(

2
√
2√

2 3

)

(b) Diagonalise the matrices, i.e. rewrite them in the A = OTDO

form, where O is a orthogonal matrix and D a diagonal one.

(c) Explain for which of these matrices you may use the power method

to find the maximum eigenvalue and the corresponding eigenvec-

tor. Perform a few iterations of the power method (starting from

a (1, 1)T vector) and compare to the exact result using the infinite

norm (measure both the progress of the solution, i.e. the distance

from the previous step, and the distance from the exact solution.

Check both the eigenvalue and eigenvector).

103

104

Appendix A

Kronecker δ and symbolic sums

A.1 δ symbol

The Kronecker δ symbol is defined as

δj,i =

{

1 if j = i

0 if j 6= i
, (A.1)

where j and i assume integer values. For example, we have δ3,0 = 0, and

δ−1,−1 = 1.

The identity matrix has clearly 1ij = δij, or

1 =

















1 0 0

0 1 0 . . . 0
... 0

. . . 0
...

...
... 0

. . .
...

0 0 1

















. (A.2)

Similarly, for j = 1, ...,m, i = 1, ..., n we may write the entries of the δ

105

A.1 δ symbol

symbol as a matrix. We have































1 0 0

0 1 0 . . . 0
... 0

. . . 0
...

...
... 0

. . .
...

0 0 1

0 0
...

...

0 0































if m > n, (A.3)

and


















1 0 0 0 . . . 0

0 1 0 . . . 0
... . . .

...
... 0

. . . 0
...

... . . .
...

...
... 0

. . .
...

... . . .
...

0 0 1 0 . . . 0



















if m < n. (A.4)

We may also write expressions such as δj,i+1, which means

δj,i+1 =

{

1 if j = i+ 1 (or i = j − 1)

0 if j 6= i+ 1
. (A.5)

As an example, if j = 1 and i = 1, ..., n, then δj,i+1 = 0 ∀i, while if j = 2 we

have δj,i+1 = 1 if i = 1. In other words, and using n = 7 just for explicative

purposes,






















0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0























. (A.6)

In a similar way,

δj,i+2 =

{

1 if j = i+ 2 (or i = j − 2)

0 if j 6= i+ 2
(A.7)

106

Kronecker δ and symbolic sums

which may be written as























0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0























. (A.8)

And

δj,i−3 =

{

1 if j = i− 3 (or i = j + 3)

0 if j 6= i− 3
, (A.9)

represented by






















0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0























. (A.10)

We may also write expressions including functions of i or j

j δj,i =

{

j (= i) if j = i

0 if j 6= i
(A.11)

or






















1 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 3 0 0 0 0

0 0 0 4 0 0 0

0 0 0 0 5 0 0

0 0 0 0 0 6 0

0 0 0 0 0 0 7























. (A.12)

We clearly have

j δj,i = i δj,i. (A.13)

Also,

i2 δj,i =

{

i2 (= j2) if j = i

0 if j 6= i
, (A.14)

107

A.1 δ symbol

represented by






















1 0 0 0 0 0 0

0 4 0 0 0 0 0

0 0 9 0 0 0 0

0 0 0 16 0 0 0

0 0 0 0 25 0 0

0 0 0 0 0 36 0

0 0 0 0 0 0 49























, (A.15)

for which

i2 δj,i = j2 δj,i. (A.16)

And more in general we have

f(j) δj,i = f(i) δj,i. (A.17)

Let us consider

j δj,i+1 =

{

j (= i+ 1) if j = i+ 1

0 if j 6= i+ 1
, (A.18)

which for j = 1, ..., 7, i = 1, ..., 7 is























0 0 0 0 0 0 0

2 0 0 0 0 0 0

0 3 0 0 0 0 0

0 0 4 0 0 0 0

0 0 0 5 0 0 0

0 0 0 0 6 0 0

0 0 0 0 0 7 0























. (A.19)

In this case,

j δj,i+1 = (i+ 1) δj,i+1 (A.20)

applies.

If we write

j2 δj,i−1 =

{

j2 (= (i− 1)2) if j = i− 1

0 if j 6= i− 1
, (A.21)

108

Kronecker δ and symbolic sums

we have






















0 1 0 0 0 0 0

0 0 4 0 0 0 0

0 0 0 9 0 0 0

0 0 0 0 16 0 0

0 0 0 0 0 25 0

0 0 0 0 0 0 36

0 0 0 0 0 0 0























(A.22)

And in general

f(j) δj,i−1 = f(i− 1) δj,i−1, (A.23)

and so on.

A.2 Symbolic sums

When we sum over an index, that index becomes “dummy” and dependence

on that index disappears from the expression. For example, if αk,n has a

dependence on 2 indexes, the expression

∑

n

αk,n = αk,1 + αk,2 + ...+ αk,n ≡ βk (A.24)

depends on the only index k.

We already know this from matrices

∑

n

αk,nβn,i = γk,i. (A.25)

When these sums involve δ symbols, the summation brings a simplifica-

tion. Let us consider

4
∑

i=1

f(i) δ3,i = f(1)δ3,1 + f(2)δ3,2 + f(3)δ3,3 + f(4)δ3,4 = f(3). (A.26)

Not only the i index disappears, but also the δ symbol, and all is in the

summation are fixed to the value that accompanies i in the δ. Formally

∑

i

f(i) δj,i = f(j). (A.27)

109

A.2 Symbolic sums

In a similar way

4
∑

i=1

αj,lδl,3 = αj,1δ1,3 + αj,2δ2,3 + αj,3δ3,3 + αj,4δ4,3 = αj,3. (A.28)

Formally
∑

i

αj,lδl,i = αj,i. (A.29)

And

4
∑

i=1

f(l)αj,lδl,3 = f(1)αj,1δ1,3+f(2)αj,2δ2,3+f(3)αj,3δ3,3+f(4)αj,4δ4,3 = f(3)αj,3,

(A.30)

generalising to
∑

i

f(l)αj,lδl,i = f(i)αj,i. (A.31)

Even if more than one δ symbol is present, a summation can cancel only

one of them, since the correct index dependence has to persist, so we have

∑

l

l δj,lδl,i = j δj,i, (A.32)

if we use the summation to cancel the first δ, and

∑

l

l δj,lδl,i = i δj,i, (A.33)

if we use it to cancel the second one, nevertheless the two results are equiv-

alent (eq. A.13). To better clarify, if for example l = 1, ..., 3, we have

∑

l

δj,lδl,i = δj,1δ1,i + δj,2δ2,i + δj,3δ1,i, (A.34)

which is an expression that survives only if j = i, i.e. a δj,i.

Nevertheless two summations may cancel two δs, as in

∑

l

∑

n

l n2 αk,lδl,nδn,i =
∑

l

l i2 αk,lδl,i = i3 αk,i. (A.35)

110

Kronecker δ and symbolic sums

A.3 Application: the Derivative-Multiplication

Commutator

We have seen that derivation on polynomials may be written as an infinite

matrix

Dj,i = j δj,i−1, (A.36)

acting on the infinite vector of the coefficient of the polynomial c

∑

i

ci x
i. (A.37)

In a similar way, the multiplication by x is given by the matrix

Mj,i = δj,i+1. (A.38)

Let us define the commutator C

C = [D,M] ≡ DM −MD. (A.39)

We have

Cj,i =
∑

l

Dj,lMl,i −
∑

l

Mj,lDl,i =

=

(

∑

l

j δj,l−1δl,i+1

)

−
(

∑

l

δj,l+1 (l) δl,i−1

)

=

= j δj,(l=i+1)−1 − (l = i− 1) δj,(l=i−1)+1 =

= j δj,i − (i− 1) δj,i = (j − j + 1)δj,i (A.40)

⇒ Cj,i = δj,i (A.41)

111

A.3 Application: the Derivative-Multiplication Commutator

112

Appendix B

Programs

B.1 Matrix multiplication

#include<iostream>

#include<fstream>

#include<math . h>

#include<c s t d l i b>

//Matrix mu l t i p l i c a t i o n

us ing namespace std ;

/∗
The f i l e s wi th matr ices have to be w r i t t e as

2 3

1 2 3

2 3 4

i t means 2 rows , 3 columns and then the matrix

∗/

int main ()

113

B.1 Matrix multiplication

{
i f s t r e am in1 (”matr ice1 . dat”) ; //matrix on the l e f t

i f s t r e am in2 (”matr ice2 . dat”) ; //matrix on the r i g h t

int r1 , r2 , c1 , c2 ; // corresponding rows and columns

in1 >> r1 ; // reads from each f i l e the s i z e o f the matr ices

in1 >> c1 ;

in2 >> r2 ;

in2 >> c2 ;

i f (c1 != r2){ cout << ”wrong rows columns ! ” << endl ; return 0 ;}
// check

double m1[r1] [c1] ;

double m2[r2] [c2] ;

double mf [r1] [c2] ;

for (int j =0; j<r1 ; j++) //and then reads the matrix

{
for (int i =0; i<c1 ; i++) in1 >> m1[j] [i] ;

}
for (int j =0; j<r2 ; j++)

{
for (int i =0; i<c2 ; i++) in2 >> m2[j] [i] ;

}
for (int j =0; j<r1 ; j++) //computes

for (int i =0; i<c2 ; i++)

{
mf [j] [i]=0;

for (int l =0; l<c1 ; l++) mf [j] [i]+=m1[j] [l]∗m2[l] [i] ;

}
cout << ”LEFT MATRIX” << endl ;

for (int j =0; j<r1 ; j++)

{
for (int i =0; i<c1 ; i++) cout << m1[j] [i] << ” ” ;

cout << endl ;

}
cout << ”RIGHT MATRIX” << endl ;

for (int j =0; j<r2 ; j++)

{
for (int i =0; i<c2 ; i++) cout << m2[j] [i] << ” ” ;

114

Programs

cout << endl ;

}
cout << ”PRODUCT MATRIX” << endl ;

for (int j =0; j<r1 ; j++)

{
for (int i =0; i<c2 ; i++) cout << mf [j] [i] << ” ” ;

cout << endl ;

}
return 0 ;

}

115

B.2 Gaussian elimination

B.2 Gaussian elimination

#include<iostream>

#include<fstream>

#include<math . h>

#include<c s t d l i b>

//Gaussian El iminat ion wi th Pa r t i a l P i vo t ing

us ing namespace std ;

/∗
t a k e s the system

1x + 2y =0

2x +8y =1

in the form

2

1 2 0

2 8 1

∗/

int main ()

{
i f s t r e am in (”matr ice . dat”) ; // f i l e wi th the matrix

int n ; //assumed square , no checks

in >> n ;

double a [n] [n] ; //matrix

double b [n] ; // cons tant term

double x [n] ; // v a r i a b l e s

double m[n] [n] ; // mu l t i p l i e r s

double s [n] ; // s c a l i n g f a c t o r s

for (int j =0; j<n ; j++) // reads matrix and cons tant term

116

Programs

{
for (int i =0; i<n ; i++) in >> a [j] [i] ;

in >> b [j] ;

}
cout << ”System” << endl ;

for (int j =0; j<n ; j++) // shows the system on conso l e

{
for (int i =0; i<n ; i++)

{
cout << ” ” ;

i f (a [j] [i]>=0) cout << ”+” ;

cout << a [j] [i] << ”x” << i ;

}
cout << ” = ” << b [j] << endl ;

}
for (int j =0; j<n ; j++) //computes s c a l i n g f a c t o r s

{
s [j]= fabs (a [j] [0]) ;

for (int i =1; i<n ; i++)

{
double l s=fabs (a [j] [i]) ;

i f (l s>s [j]) s [j]= l s ;

}
i f (! s [j])

{
cout << ”No unique so lu t i on , row o f z e r o s ! ” << endl ;

return 0 ;

}
}

cout << ” Sca l i ng f a c t o r s ” << endl ;

for (int j =0; j<n ; j++) cout << ” s [” << j << ”]=” << s [j] << endl ;

for (int j =0; j<n−1; j++)

{
cout << ”Step ” << j << endl ;

double max=fabs (a [j] [j]) / s [j] ;

int ml=j ;

for (int l=j +1; l<n ; l++)

117

B.2 Gaussian elimination

{
double l s=fabs (a [l] [j]) / s [l] ;

i f (l s>max)

{
max=l s ;

ml=l ;

}
}

i f (!max)

{
cout << ”No unique s o l u t i o n ! (ze ro p ivot) ” << endl ;

return 0 ;

}
else

{
i f (ml!= j) // swaps

{
cout << ”Swap o f row ” << j << ” and ” << ml << endl ;

double swap ;

for (int i=j ; i<n ; i++)

{
swap=a [j] [i] ;

a [j] [i]=a [ml] [i] ;

a [ml] [i]=swap ;

}
swap=s [j] ;

s [j]= s [ml] ;

s [ml]=swap ;

swap=b [j] ;

b [j]=b [ml] ;

b [ml]=swap ;

cout << ”After swapping” << endl ;

for (int k=0;k<n ; k++) // shows the system on conso l e

{
for (int i =0; i<n ; i++)

{
cout << ” ” ;

118

Programs

i f (a [k] [i]>=0) cout << ”+” ;

cout << a [k] [i] << ”x” << i ;

}
cout << ” = ” << b [k] << endl ;

}
}

for (int l=j +1; l<n ; l++) //computes mu l t i p l y i n g f a c t o r s

{
m[j] [l]=a [l] [j] / a [j] [j] ;

a [l] [j]=0;

for (int i=j +1; i<n ; i++)

{
a [l] [i]−=a [j] [i]∗m[j] [l] ;

}
b [l]−=b [j]∗m[j] [l] ;

}
cout << ”Mult ip ly ing f a c t o r s ” << endl ;

for (int l=j +1; l<n ; l++) cout << ”m[” << l << ”]=”

<< m[j] [l] << endl ;

}
cout << ”After sub t r a c t i on ” << endl ;

for (int k=0;k<n ; k++) // shows the system on conso l e

{
for (int i =0; i<n ; i++)

{
cout << ” ” ;

i f (a [k] [i]>=0) cout << ”+” ;

cout << a [k] [i] << ”x” << i ;

}
cout << ” = ” << b [k] << endl ;

}
}

cout << ”After manipulat ion ” << endl ; // wr i t e s the t r i a n g u l a r system

for (int k=0;k<n ; k++) // shows the system on conso l e

{
for (int i =0; i<n ; i++)

{

119

B.2 Gaussian elimination

cout << ” ” ;

i f (a [k] [i]>=0) cout << ”+” ;

cout << a [k] [i] << ”x” << i ;

}
cout << ” = ” << b [k] << endl ;

}
i f (! a [n−1] [n−1])

{
cout << ”No unique s o l u t i o n ! (l a s t row o f z e r o s) ” << endl ;

return 0 ;

}
for (int j=n−1; j>=0;j−−) // backward s u b s t i t u t i o n

{
x [j]=b [j] ;

for (int i=j +1; i<n ; i++)

{
x [j]−=a [j] [i]∗ x [i] ;

}
x [j]/=a [j] [j] ;

}
cout << ” So lu t i on : ” << endl ; // wr i t e s the r e s u l t

for (int i =0; i<n ; i++) cout << ”x” << i << ”=” << x [i] << endl ;

return 0 ;

}

120

Programs

B.3 Inverse matrix

#include<iostream>

#include<fstream>

#include<math . h>

#include<c s t d l i b>

//Matrix i n v e r s i on wi th Pa r t i a l P i vo t ing

us ing namespace std ;

int main ()

{
i f s t r e am in (”mat r i c e i . dat ”) ; // f i l e wi th the matrix

int n ; //assumed square , no checks

in >> n ;

double a [n] [n] ; //matrix

double ac [n] [n] ; // o r i g i n a l matrix

double B[n] [n] ; // f o r the s o l u t i o n o f the n systems

double a 1 [n] [n] ; // inv e r s e

double m[n] [n] ; // mu l t i p l i e r s

double s [n] ; // s c a l i n g f a c t o r s

for (int j =0; j<n ; j++) // reads matrix

{
for (int i =0; i<n ; i++) { in >> a [j] [i] ; ac [j] [i]=a [j] [i] ; }

}
for (int j =0; j<n ; j++) //computes s c a l i n g f a c t o r s

{
s [j]= fabs (a [j] [0]) ;

for (int i =1; i<n ; i++)

{
double l s=fabs (a [j] [i]) ;

i f (l s>s [j]) s [j]= l s ;

}
i f (! s [j]) { cout << ”No inve r s e , row o f z e r o s ! ” << endl ; return 0 ;}

121

B.3 Inverse matrix

}
for (int j =0; j<n ; j++)

// the know terms are i n i t i a l l y a un i t y matrix

for (int i =0; i<n ; i++)

{
i f (i==j) B[j] [i]=1;

else B[j] [i]=0;

}
cout << ”Before manipulat ion ” << endl ;

// shows the system be f o r e manipulat ion

for (int j =0; j<n ; j++)

{
for (int i =0; i<n ; i++)

{
i f (a [j] [i]>=0) cout << ”+” ;

cout << a [j] [i] << ”x” << i << ” ” ;

}
cout << ”= ” ;

for (int i =0; i<n ; i++) cout << ” ” << B[j] [i] ;

cout << endl ;

}
for (int j =0; j<n−1; j++) // p i v o t

{
double max=fabs (a [j] [j]) / s [j] ;

int ml=j ;

for (int l=j +1; l<n ; l++)

{
double l s=fabs (a [l] [j]) / s [l] ;

i f (l s>max)

{
max=l s ;

ml=l ;

}
}

i f (!max)

{ cout << ”No i nv e r s e ! (ze ro p ivot) ” << endl ; return 0 ;}
else

122

Programs

{
i f (ml!= j) // swaps

{
double swap ;

for (int i=j ; i<n ; i++)

{
swap=a [j] [i] ;

a [j] [i]=a [ml] [i] ;

a [ml] [i]=swap ;

}
for (int k=0;k<n ; k++)

{
swap=B[j] [k] ;

B[j] [k]=B[ml] [k] ;

B[ml] [k]=swap ;

}
swap=s [j] ;

s [j]= s [ml] ;

s [ml]=swap ;

}
for (int l=j +1; l<n ; l++) //computes mu l t i p l y i n g f a c t o r s

{
m[j] [l]=a [l] [j] / a [j] [j] ;

a [l] [j]=0;

for (int i=j +1; i<n ; i++)

{
a [l] [i]−=a [j] [i]∗m[j] [l] ;

}
for (int k=0;k<n ; k++) B[l] [k]−=B[j] [k]∗m[j] [l] ;

}
}

}
cout << ”After manipulat ion ” << endl ;

for (int j =0; j<n ; j++)

{
for (int i =0; i<n ; i++)

{

123

B.3 Inverse matrix

i f (a [j] [i]>=0) cout << ”+” ;

cout << a [j] [i] << ”x” << i << ” ” ;

}
cout << ”= ” ;

for (int i =0; i<n ; i++) cout << ” ” << B[j] [i] ;

cout << endl ;

}
i f (! a [n−1] [n−1])

{
cout << ”No i nv e r s e ! (l a s t row o f z e r o s) ” << endl ;

return 0 ;

}
// checks t ha t the i n v e r s e e x i s t s

for (int k=0;k<n ; k++)

{
for (int j=n−1; j>=0;j−−) // backward s u b s t i t u t i o n

{
a 1 [j] [k]=B[j] [k] ;

for (int i=j +1; i<n ; i++)

{
a 1 [j] [k]−=a [j] [i]∗ a 1 [i] [k] ;

}
a 1 [j] [k]/=a [j] [j] ;

}
}

cout << ” Inve r s e matrix , s o l u t i o n : ” << endl ; // wr i t e s r e s u l t

for (int j =0; j<n ; j++)

{
for (int i =0; i<n ; i++) cout << a 1 [j] [i] << ” ” ;

cout << endl ;

}
double p [n] [n] ;

for (int j =0; j<n ; j++)

{
for (int i =0; i<n ; i++)

{
p [j] [i]=0;

124

Programs

for (int l =0; l<n ; l++)

{
p [j] [i]+=a 1 [j] [l]∗ ac [l] [i] ;

}
}

}
cout << ”Check product : ” << endl ; // check the r e s u l t

for (int j =0; j<n ; j++)

{
for (int i =0; i<n ; i++) cout << p [j] [i] << ” ” ;

cout << endl ;

}
double x [n] ;

double b [n] ;

// s o l v e s a system , i t has to be inc luded in the matrix f i l e

for (int i =0; i<n ; i++) { in >> b [i] ; x [i]=0;}
for (int j =0; j<n ; j++)

{
for (int i =0; i<n ; i++) x [j]+=a 1 [j] [i]∗b [i] ;

}
cout << ”System” << endl ;

for (int j =0; j<n ; j++) // shows the system on conso l e

{
for (int i =0; i<n ; i++)

{
cout << ” ” ;

i f (a [j] [i]>=0) cout << ”+” ;

cout << a [j] [i] << ”x” << i ;

}
cout << ” = ” << b [j] << endl ;

}
cout << ” So lu t i on : ” << endl ; // wr i t e s the r e s u l t

for (int i =0; i<n ; i++) cout << ”x”

<< i << ”=” << x [i] << endl ;

return 0 ;

}

125

B.4 LU decomposition

B.4 LU decomposition

#include<iostream>

#include<fstream>

#include<math . h>

#include<c s t d l i b>

//LU decomposi t ion wi th permutat ion and s o l u t i o n o f a system

us ing namespace std ;

int main ()

{
i f s t r e am in (”matr i ce lu2 . dat”) ;

// f i l e wi th the matrix and known terms

int n ; //assumed square , no checks

in >> n ;

double a [n] [n] ; //matrix

double m[n] [n] ; // mu l t i p l i e r s

int P[n] [n] ; // permutat ion matrix

int s [n] ; //swap vec t o r

double b [n] ; //known vec t o r

for (int j =0; j<n ; j++)

{
s [j]= j ; //no swap at beg inn ing

m[j] [j]=1; // the r e w i l l be ones on the d iag

for (int i=j +1; i<n ; i++) m[j] [i]=0; // s t a r t s wi th 0 e l s ewhere

}
for (int j =0; j<n ; j++) // reads matrix

{
for (int i =0; i<n ; i++) { in >> a [j] [i] ; P [j] [i]=0;}
in >> b [j] ;

}
cout << ”Matrix” << endl ;

126

Programs

for (int j =0; j<n ; j++) // shows the matrix on conso l e

{
for (int i =0; i<n ; i++)

{
cout << ” ” ;

i f (a [j] [i]>=0) cout << ”+” ;

cout << a [j] [i] ;

}
cout << endl ;

}
cout << ”System” << endl ;

for (int j =0; j<n ; j++) // shows the system on conso l e

{
for (int i =0; i<n ; i++)

{
cout << ” ” ;

i f (a [j] [i]>=0) cout << ”+” ;

cout << a [j] [i] << ”x” << i ;

}
cout << ” = ” << b [j] << endl ;

}
for (int j =0; j<n−1; j++)

{
i f (! a [j] [j]) // i f the p i v o t i s 0

{
bool found=f a l s e ;

// l oo k s f o r another anche t r a c k s i f t h e r e i s one

double swap ;

for (int l=j +1; l<n ; l++)

{
i f (a [l] [j]) // i f non−zeo

{
swap=s [j] ; // swaps s , a ,

s [j]= s [l] ;

s [l]=swap ;

for (int i=j ; i<n ; i++)

{

127

B.4 LU decomposition

swap=a [j] [i] ;

a [j] [i]=a [l] [i] ;

a [l] [i]=swap ;

}
for (int k=0;k<j ; k++)

{
swap=m[j] [k] ;

m[j] [k]=m[l] [k] ;

m[l] [k]=swap ;

}
found=true ;

break ;

}
}

i f (! found) // then sungu lar

{
cout << ” S ingu la r matrix ” << endl ;

return 0 ;

}
}//computes mu l t i p l y i n g f a c t o r s (does not ac t on b !)

for (int l=j +1; l<n ; l++)

{
m[l] [j]=a [l] [j] / a [j] [j] ;

a [l] [j]=0;

for (int i=j +1; i<n ; i++)

{
a [l] [i]−=a [j] [i]∗m[l] [j] ;

}
}

}
cout << ”Lower” << endl ; // wr i t e s the t r i a n g u l a r system

for (int k=0;k<n ; k++) // shows the system on conso l e

{
for (int i =0; i<n ; i++)

{
cout << ” ” ;

i f (m[k] [i]>=0) cout << ”+” ;

128

Programs

cout << m[k] [i] ;

}
cout << endl ;

}
cout << ”Upper” << endl ; // wr i t e s the t r i a n g u l a r system

for (int k=0;k<n ; k++) // shows the system on conso l e

{
for (int i =0; i<n ; i++)

{
cout << ” ” ;

i f (a [k] [i]>=0) cout << ”+” ;

cout << a [k] [i] ;

}
cout << endl ;

}
cout << ”Swap” << endl ; // vec t o r o f swaps and permutat ion matrix

for (int i =0; i<n ; i++)

{
cout << ” s [” << i << ”]=” << s [i] << endl ;

P [i] [s [i]]=1 ;

}
double b swap [n] ; // swaps b

double b swap2 [n] ;

for (int j =0; j<n ; j++)

{
b swap [j]=b [s [j]] ;

b swap2 [j]=0;

for (int i =0; i<n ; i++)

{
b swap2 [j]+=P[j] [i]∗b [i] ;

}
}

cout << ”b swapped” << endl ; // checks the e qu i va l ence

for (int i =0; i<n ; i++) cout << ”b swap [” << i << ”]=”

<< b swap [i] << ” ” << b swap2 [i] << endl ;

double o [n] [n] ;

for (int j =0; j<n ; j++)

129

B.4 LU decomposition

{
for (int i =0; i<n ; i++)

{
o [j] [i]=0;

for (int l =0; l<n ; l++) o [j] [i]+=m[j] [l]∗ a [l] [i] ;
}

}
double o r i g [n] [n] ;

for (int j =0; j<n ; j++)

{
for (int i =0; i<n ; i++)

{
o r i g [s [j]] [i]=o [j] [i] ;

}
}

double permut [n] [n] ;

for (int j =0; j<n ; j++)

{
for (int i =0; i<n ; i++)

{
permut [j] [i]=0;

for (int l =0; l<n ; l++)

{
permut [j] [i]+=P[j] [l]∗ o r i g [l] [i] ;

}
}

}
cout << ”Product” << endl ; // wr i t e s the t r i a n g u l a r system

for (int k=0;k<n ; k++) // shows the system on conso l e

{
for (int i =0; i<n ; i++)

{
cout << ” ” ;

i f (o [k] [i]>=0) cout << ”+” ;

cout << o [k] [i] ;

}
cout << endl ;

130

Programs

}
cout << ”Or i g i na l ” << endl ; // wr i t e s the t r i a n g u l a r system

for (int k=0;k<n ; k++) // shows the system on conso l e

{
for (int i =0; i<n ; i++)

{
cout << ” ” ;

i f (o r i g [k] [i]>=0) cout << ”+” ;

cout << o r i g [k] [i] ;

}
cout << endl ;

}
cout << ”Permutation” << endl ;

for (int k=0;k<n ; k++) // shows the system on conso l e

{
for (int i =0; i<n ; i++)

{
cout << ” ” ;

cout << P[k] [i] ;

}
cout << endl ;

}
cout << ”Permutated” << endl ; // wr i t e s the t r i a n g u l a r system

for (int k=0;k<n ; k++) // shows the system on conso l e

{
for (int i =0; i<n ; i++)

{
cout << ” ” ;

i f (permut [k] [i]>=0) cout << ”+” ;

cout << permut [k] [i] ;

}
cout << endl ;

}
double y [n] ;

for (int i =0; i<n ; i++)// forward s o s t i t u t i o n , uses d iag=1

{
y [i]=b swap [i] ;

131

B.4 LU decomposition

for (int k=0;k<i ; k++)

{
y [i]−=m[i] [k]∗ y [k] ;

}
}

cout << ”Y: ” << endl ; // wr i t e s the r e s u l t

for (int i =0; i<n ; i++) cout << ”y” << i << ”=” << y [i] << endl ;

double x [n] ;

for (int j=n−1; j>=0;j−−) // backward s u b s t i t u t i o n

{
x [j]=y [j] ;

for (int i=j +1; i<n ; i++)

{
x [j]−=a [j] [i]∗ x [i] ;

}
x [j]/=a [j] [j] ;

}
cout << ” So lu t i on : ” << endl ; // wr i t e s the r e s u l t

for (int i =0; i<n ; i++) cout << ”x” << i << ”=” << x [i] << endl ;

return 0 ;

}

132

Programs

B.5 Iterative methods

#include<iostream>

#include<fstream>

#include<math . h>

#include<c s t d l i b>

us ing namespace std ;

// Jacob i and Gauss−s e i d e l methods

int main ()

{
i f s t r e am in (”mat r i c e j g . dat”) ; // f i l e wi th the matrix

ofstream out (” out jacog . dat”) ;

int i t e r ;

int n ; //assumed square , no checks

in >> n ;

double a [n] [n] ; //matrix

double b [n] ; // cons tant term

for (int j =0; j<n ; j++) // reads matrix and cons tant term

{
for (int i =0; i<n ; i++) in >> a [j] [i] ;

in >> b [j] ;

}
double x [n] ; // v a r i a b l e s

for (int i =0; i<n ; i++) x [i]=0;

double x0 [n] ; // copy o f v e c t o r

for (int j =0; j<n ; j++) // shows the system on conso l e

{
for (int i =0; i<n ; i++)

{
out << ” ” ;

i f (a [j] [i]>=0) out << ”+” ;

out << a [j] [i] << ”x” << i ;

133

B.5 Iterative methods

}
out << ” = ” << b [j] << endl ;

}
out << ” S ta r t i ng seed ” << endl ; // shows the s t a r t i n g seed

for (int i =0; i<n ; i++) out << x [i] << endl ;

double e r r =1;// i n i t i a l i s e s er ror and i t e r a t i o n

int maxiter =10000;

i t e r =0;

while ((err>1e−8)&&(i t e r<maxiter))

{
i t e r++;

out << ” i t e r=” << i t e r << endl ; // p r i n t s i t e r a t i o n

for (int j =0; j<n ; j++) x0 [j]=x [j] ; // cop i e s the vec t o r

for (int j =0; j<n ; j++)

{
x [j]=b [j] ; // j a c o b i method i t e r a t i o n

for (int i =0; i<j ; i++) x [j]−=a [j] [i]∗ x0 [i] ;
for (int i=j +1; i<n ; i++) x [j]−=a [j] [i]∗ x0 [i] ;
x [j]/=a [j] [j] ;

}
e r r =0;

double norm=0;

for (int j =0; j<n ; j++)//computes the change

{
double l e=fabs (x [j]−x0 [j]) ;

double ln=fabs (x [j]) ;

i f (l e>e r r) e r r=l e ;

i f (ln>norm) norm=ln ;

}
i f (i t e r <4)// p r i n t s f i r s t i t e r a t i o n s f o r r e f e r ence

{
out << ”approximate s o l u t i o n ” << endl ;

for (int j =0; j<n ; j++)

{
out << x [j] << endl ;

}
}

134

Programs

out << ” abse r r=” << e r r << endl ; // a b s o l u t e er ror

e r r/=norm ;

out << ” e r r=” << e r r << endl ;

}
out << ” So lu t i on ” << endl ;

for (int j =0; j<n ; j++)

{
out << x [j] << endl ;

}
out << ”Gauss−S e i d e l ” << endl ;

// the same as above f o r Gauss−s e i d e l

for (int j =0; j<n ; j++)

{
x [j]=1;

}
for (int j =0; j<n ; j++)

{
for (int i =0; i<n ; i++)

{
out << ” ” ;

i f (a [j] [i]>=0) out << ”+” ;

out << a [j] [i] << ”x” << i ;

}
out << ” = ” << b [j] << endl ;

}
out << ” S ta r t i ng seed ” << endl ;

for (int i =0; i<n ; i++) out << x [i] << endl ;

e r r =1;

i t e r =0;

while ((err>1e−8)&&(i t e r<maxiter))

{
i t e r++;

out << ” i t e r=” << i t e r << endl ;

for (int j =0; j<n ; j++) x0 [j]=x [j] ;

// save on ly f o r comparison

for (int j =0; j<n ; j++)

{

135

B.5 Iterative methods

x [j]=b [j] ;

for (int i =0; i<j ; i++) x [j]−=a [j] [i]∗ x [i] ;
// only d i f f e r e n c e

for (int i=j +1; i<n ; i++) x [j]−=a [j] [i]∗ x0 [i] ;
x [j]/=a [j] [j] ;

}
e r r =0;

double norm=0;

for (int j =0; j<n ; j++)

{
double l e=fabs (x [j]−x0 [j]) ;

double ln=fabs (x [j]) ;

i f (l e>e r r) e r r=l e ;

i f (ln>norm) norm=ln ;

}
i f (i t e r <4)

{
out << ”approximate s o l u t i o n ” << endl ;

for (int j =0; j<n ; j++)

{
out << x [j] << endl ;

}
}

out << ” abse r r=” << e r r << endl ;

e r r/=norm ;

out << ” e r r=” << e r r << endl ;

}
out << ” So lu t i on ” << endl ;

for (int j =0; j<n ; j++)

{
out << x [j] << endl ;

}
return 0 ;

}

136

Programs

B.6 Power method

#include<iostream>

#include<fstream>

#include<math . h>

#include<c s t d l i b>

//power method , assumes symmetric matrix

us ing namespace std ;

double r2 () //a random func t i on

{
return (double) rand () / (double)RANDMAX ;

}

int main ()

{
i f s t r e am in (”matr icep . dat”) ;

// f i l e wi th the matrix

ofstream out (”outpower . dat”) ;

int i t e r ;

int n ; //assumed square , no checks

in >> n ;

double a [n] [n] ; //matrix

out << ”Matrix” << endl ;

for (int j =0; j<n ; j++) // reads matrix

{
for (int i =0; i<n ; i++)

{ in >> a [j] [i] ; out << a [j] [i] << ” ” ;}
out << endl ;

}
double x [n] ; // normal ised e i g env e c t o r

double y [n] ; //not normal ised

double v [n] [n] ; // b a s i s

137

B.6 Power method

double lambda [n] ; // e i g enva l u e s

double e r r v a l ; // error on e i g enva l u e

double e r r v e c t ; // error on e i g env e c t o r

int maxiter =100000;//maximum i t e r a t i o n s

double old lambda ; // prev ious e i g env e c t o r e s t imate

double a2 [n] [n] ; // square matrix

for (int i =0; i<n ; i++)

for (int k=0;k<n ; k++)

{
a2 [i] [k]=0;

for (int l =0; l<n ; l++)

{
a2 [i] [k]+=a [i] [l]∗ a [l] [k] ;

//computes square matrix

}
}

out << ”Square matrix ” << endl ;

for (int i =0; i<n ; i++)

{
for (int k=0;k<n ; k++)

{
out << a2 [i] [k] << ” ” ;

}
out << endl ;

}
for (int j =0; j<n ; j++)// l oo k s f o r the b a s i s

{
i t e r =0;// i n i t i a l i s e s

e r r v a l =1. ;

e r r v e c t =1. ;

old lambda=0;

bool s t a r t=f a l s e ;

// t r i e s a seed which i s not a l i n e a r

// combination o f found e i g en v e c t o r s

while (! s t a r t)

{
for (int i =0; i<n ; i++) x [i]= r2 () ;

138

Programs

// wi th randomness , but not necessary

x [j]=1 . ; // so t ha t i t i s norm=1

for (int i =0; i<j ; i++)

{
double s c a l =0;

for (int k=0;k<n ; k++) s c a l+=x [k]∗ v [i] [k] ;

for (int k=0;k<n ; k++) x [k]−=s c a l ∗v [i] [k] ;

}
for (int k=0;k<n ; k++) i f (f abs (x [k])>1e−12) s t a r t=true ;

}
while (((e r rva l >1e−12) | | (e r rvec t >1e−12))&&(i t e r<maxiter))

{
i f (i t e r)

{
for (int i =0; i<j ; i++)

{
double s c a l =0;

for (int k=0;k<n ; k++) s c a l+=x [k]∗ v [i] [k] ;

for (int k=0;k<n ; k++) x [k]−=s c a l ∗v [i] [k] ;

// does the s u b t r a c t i on at each s t ep to avoid error propagat ion

}
}

double maxx=0;

for (int i =0; i<n ; i++)

{
double lmx=fabs (x [i]) ;

i f (lmx>maxx) maxx=lmx ;

}
for (int i =0; i<n ; i++) x [i]/=maxx ;

// normal i ses (i n f i n i t e norm)

i t e r++;

double fabslambda=0;// a b s o l u t e va lue o f e i g enva l u e

lambda [j]=0; // e i g enva l u e

for (int i =0; i<n ; i++)

{
y [i]=0;

for (int k=0;k<n ; k++)

139

B.6 Power method

{
y [i]+=a2 [i] [k]∗ x [k] ;

// does i t f i r s t f o r square , shou ld converge

}
double ln=fabs (y [i]) ;

i f (ln>fabslambda)

{ lambda [j]=y [i] / x [i] ; fabslambda=ln ;}
// the e i g enva l u e i s approximated by the

// r a t i o o f maximum modulus components

}
i f (fabslambda<1e−12)

{
e r r v a l=e r r v e c t =0;

lambda [j]=0;

}
else

{
e r r v a l=fabs (lambda [j]−old lambda)/ fabslambda ;

old lambda=lambda [j] ;

e r r v e c t =0;

for (int i =0; i<n ; i++)

{
y [i]/=lambda [j] ;

double ln=fabs (y [i]−x [i]) ;

i f (ln>e r r v e c t) e r r v e c t=ln ;

x [i]=y [i] ;

}
}

}
i f ((i t e r>=maxiter)&&(e r rva l >1e−8)&&(er rvec t >1e−8))

{out << ”Did not converge at e i g enva lue ”

<< j << endl ; return 0 ;}
double n2=0;

for (int i =0; i<n ; i++)

{
n2+=x [i]∗ x [i] ;

}

140

Programs

n2=sq r t (n2) ;

for (int i =0; i<n ; i++)//norm 2 e i g env e c t o r

{
v [j] [i]=x [i] / n2 ;

}
out << ” I t e r a t i o n s=” << i t e r << endl ;

out << ”Eigenvalue ” << ” ” << j << ”=” << lambda [j] << endl ;

out << ”Error on e i g enva lue=” << e r r v a l << endl ;

out << ” I n f i n i t e norm e i g enve c t o r ” << endl ;

for (int i =0; i<n ; i++)

{
out << x [i] << endl ;

}
out << ”Error on e i g enve c t o r=” << e r r v e c t << endl ;

out << ”2 norm e i g enve c t o r ” << endl ;

for (int i =0; i<n ; i++)

{
out << v [j] [i] << endl ;

}
}

out << ”Matrix” << endl ;

// the same f o r the o r i g i n a l matrix , cou ld not converge

for (int j =0; j<n ; j++)

{
i t e r =0;

e r r v a l =1. ;

e r r v e c t =1. ;

old lambda=0;

bool s t a r t=f a l s e ;

while (! s t a r t)

{
for (int i =0; i<n ; i++) x [i]= r2 () ;

x [j]=1 . ;

for (int i =0; i<j ; i++)

{
double s c a l =0;

for (int k=0;k<n ; k++) s c a l+=x [k]∗ v [i] [k] ;

141

B.6 Power method

for (int k=0;k<n ; k++) x [k]−=s c a l ∗v [i] [k] ;

}
for (int k=0;k<n ; k++) i f (f abs (x [k])>1e−12) s t a r t=true ;

}
while (((e r rva l >1e−12) | | (e r rvec t >1e−12))&&(i t e r<maxiter))

{
for (int i =0; i<j ; i++)

{
double s c a l =0;

for (int k=0;k<n ; k++) s c a l+=x [k]∗ v [i] [k] ;

for (int k=0;k<n ; k++) x [k]−=s c a l ∗v [i] [k] ;

}
double maxx=0;

for (int i =0; i<n ; i++)

{
double lmx=fabs (x [i]) ;

i f (lmx>maxx) maxx=lmx ;

}
for (int i =0; i<n ; i++) x [i]/=maxx ;

i t e r++;

double fabslambda=0;

lambda [j]=0;

for (int i =0; i<n ; i++)

{
y [i]=0;

for (int k=0;k<n ; k++)

{
y [i]+=a [i] [k]∗ x [k] ;

}
double ln=fabs (y [i]) ;

i f (ln>fabslambda)

{ lambda [j]=y [i] / x [i] ; fabslambda=ln ;}
}

i f (fabslambda<1e−12)

{
e r r v a l=e r r v e c t =0;

lambda [j]=0;

142

Programs

}
else

{
e r r v a l=fabs (lambda [j]−old lambda)/ fabslambda ;

old lambda=lambda [j] ;

e r r v e c t =0;

for (int i =0; i<n ; i++)

{
y [i]/=lambda [j] ;

double ln=fabs (y [i]−x [i]) ;

i f (ln>e r r v e c t) e r r v e c t=ln ;

x [i]=y [i] ;

}
}

}
i f ((i t e r>=maxiter)&&(e r rva l >1e−8)&&(er rvec t >1e−8))

{out << ”Did not converge at e i g enva lue ”

<< j << endl ; return 0 ;}
double n2=0;

for (int i =0; i<n ; i++)

{
n2+=x [i]∗ x [i] ;

}
n2=sq r t (n2) ;

for (int i =0; i<n ; i++)

{
v [j] [i]=x [i] / n2 ;

}
out << ” I t e r a t i o n s=” << i t e r << endl ;

out << ”Eigenvalue ” << ” ” << j << ”=”

<< lambda [j] << endl ;

out << ”Error on e i g enva lue=” << e r r v a l << endl ;

out << ” I n f i n i t e norm e i g enve c t o r ” << endl ;

for (int i =0; i<n ; i++)

{
out << x [i] << endl ;

}

143

B.6 Power method

out << ”Error on e i g enve c t o r=” << e r r v e c t << endl ;

out << ”2 norm e i g enve c t o r ” << endl ;

for (int i =0; i<n ; i++)

{
out << v [j] [i] << endl ;

}
}

return 0 ;

}

144

Programs

B.7 Non linear equations

#include<iostream>

#include<fstream>

#include<math . h>

#include<c s t d l i b>

// b i s e c t i on , secant , newton and newton wi th numerical d e r i v a t i v e

us ing namespace std ;

double F(double x) // func t i on

{
return exp (x)− s i n (x) ;

}

double Fp(double x) // exac t d e r i v a t i v e

{
return exp (x)−cos (x) ;

}

double NFp(double x) // numerical d e r i v a t i v e

{
double eps=1e−8;

return (F(x+eps)−F(x))/ eps ;

}

int main ()

{
ofstream out (”newtons . dat”) ;

cout << ”Wanted s o l u t i o n ” << endl ;

int n ;

c in >> n ;

n=n−1;

out << ”#” << n+1

<< ” negat ive s o l u t i o n o f exp (x)− s i n (x) ” << endl ;

double eps=1e−12;

145

B.7 Non linear equations

out << ”wanted p r e c i s i o n=” << eps << endl ;

out . p r e c i s i o n (1 6) ;

double x1 , x2 ;

double xstar t1 , x s t a r t 2 ;

int np=n%2;

n=n/2 ;

//we know the p o s i t i o n o f z e ro s (approximate) s tudy ing the graph ,

// the f o l l ow i n g po in t s have oppo s i t e s i gn

i f (np)

{
x2=−(2∗n+2)∗M PI ;

x1=−(2∗n+3./2 .)∗M PI ;

}
else

{
x1=−(2∗n+1)∗M PI ;

x2=−(2∗n+3./2 .)∗M PI ;

}
x s t a r t 1=x1 ;

x s t a r t 2=x2 ;

double f 1=F(x1) ;

double f 2=F(x2) ;

i f (! f 1)

{
cout << ”Your s t a r t i n g po int ” << x1

<< ” was a s o l u t i o n ! ” << endl ;

return 0 ;

}
i f (! f 2)

{
cout << ”Your s t a r t i n g po int ” << x2

<< ” was a s o l u t i o n ! ” << endl ;

return 0 ;

}
out << ” B i s e c t i on ” << endl ;

out << ”x1=” << x1 << ” ” << ”F(x1)=” << f 1 << endl ;

out << ”x2=” << x2 << ” ” << ”F(x2)=” << f 2 << endl ;

146

Programs

double de l t a=x1−x2 ;
double f , x ;

int i t e r =0;

int maxiter =100;

while ((de l ta>eps)&&(i t e r<maxiter))

{
i t e r++;

x=de l t a /2.+x2 ; // po in t in the middle

f=F(x) ;

i f ((f ∗ f 1)>0) {x1=x ; f 1=f ;}
else {x2=x ; f 2=f ;}

// checks f o r s i gn s and chooses oppo s i t e s i gn s

de l t a=x1−x2 ;
out << ” i t e r=” << i t e r << endl ;

out << ”x=” << x << ” x+” << 2∗n+np+1 << ”PI=”

<< x+(2∗n+np+1)∗M PI << ” f (x)=” << f << endl ;

i f (! f) {out << ” So lu t i on found ! ” << endl ; break ;}
}

out << ”Secant ” << endl ;

x1=xs ta r t 1 ;

x2=xs ta r t 2 ;

f 1=F(x1) ;

f 2=F(x2) ;

i t e r =0;

d e l t a=x1−x2 ;
while ((de l ta>eps)&&(i t e r<maxiter))

{
// as in b i s e c t i on , but l o o k i n g f o r the secant i n t e r c e p t

i t e r++;

double d e l t a f=f1−f 2 ;

x=x2−f 2 ∗ de l t a / d e l t a f ;
f=F(x) ;

i f ((f ∗ f 1)>0) {x1=x ; f 1=f ;}
else {x2=x ; f 2=f ;}
de l t a=x1−x2 ;
out << ” i t e r=” << i t e r << endl ;

out << ”x=” << x << ” x+” << 2∗n+np+1

147

B.7 Non linear equations

<< ”PI=” << x+(2∗n+np+1)∗M PI << ” f (x)=” << f << endl ;

i f (! f) {out << ” So lu t i on found ! ” << endl ; break ;}
}

out << ”Newton” << endl ;

x=xs t a r t 1 ;

f=F(x) ;

i t e r =0;

// j u s t one po in t i s needed , l o o k s f o r the d e r i v a t i v e i n t e r c e p t

while ((f abs (f)>eps)&&(i t e r<maxiter))

{
i t e r++;

double df=Fp(x) ;

x=x−f / df ;

f=F(x) ;

out << ” i t e r=” << i t e r << endl ;

out << ”x=” << x << ” x+” << 2∗n+np+1
<< ”PI=” << x+(2∗n+np+1)∗M PI << ” f (x)=” << f << endl

}
out << ”Newton” << endl ;

x=xs t a r t 1 ;

f=F(x) ;

i t e r =0;

while ((f abs (f)>eps)&&(i t e r<maxiter))

{//computes d e r i v a t i v e numer ica l l y

i t e r++;

double df=NFp(x) ;

x=x−f / df ;

f=F(x) ;

out << ” i t e r=” << i t e r << endl ;

out << ”x=” << x << ” x+” << 2∗n+np+1
<< ”PI=” << x+(2∗n+np+1)∗M PI

<< ” f (x)=” << f << endl ;

}
return 0 ;

}

148

