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Chapter 1

Geometrical meaning of
vector calculus

1.1 A very short introduction to diffusion (and di-
mensional analysis)

Let us consider the function

plt,x) (L1)
giving, for example, the density of a substance in still air as a function of
time ¢ and position x (a 3D vector). We may assume that at time ¢t = 0
such density assumes a given distribution

p(0,x) = po(x) (1.2)

and wonder how p will change with time. Let us make the hypothesis that
at fixed x = x( the variation in time of p will depend on how much material
is in xg with respect to the neighbouring space. We may define a small
volume Vi, centred in xg and measure the average of p in the volume

foO p(t, x)dx
foO dx

This quantity depends obviously on the details of the choice of Vy,, but we

p(t7X0) = (13)

assume that it is uniquely defined if we let the size of Vi, go to zero,

[y, p(t,x)dx
pltx0) = Tim 2ol T

1.4
VxO —0 fvxo dX ( )

In a intuitive way, we may expect the amount of p to grow in time if p > p,
and to decrease if p < p. Namely, the substance will diffuse in xq if a larger
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1.1 A very short introduction to diffusion (and dimensional
analysis)

amount of it is in the surrounding small volume, and diffuse out of xq if a
smaller amount of it is in the volume.

Mathematically, we may express the change of p in time while keeping
x fixed as the partial derivative in time

Ip(t, x)
ot

In these notes, we will often use J; as a short hand for the partial derivative

= Op(t,x) = Op (1.5)

with respect to variable ¢, and we will not write the list of variables when
there is no risk of confusion.

We now assume that this variation in time is proportional to the differ-
ence between p and p

Fip(t, x) = w(p(t,x) = p(t, x)) (1.6)

In this equation, we used x in place of x( to stress that the equation is valid
everywhere!.

We note that the constant has “the dimension of inverse time”, i.e., if
—1. This is due to the fact
that on the left p is divided by time?, while on the right p is multiplied by

time is measured in seconds, k is measured in s

k. As a result, if we want the equation to make sense if we change units,
has to be the equivalent to a division by time.

Such a “dimensional analysis” is extremely useful in all physics problems,
so that it may be useful to explain it better with a simple example. Let us
assume we have a law® that relates the average velocity of walking v to the
walked distance L,

v=a/VL (1.7)

Let us also assume that we know that if we measure distances in kilometres,
and times in hours, we have o« = 7.2, meaning that we walk at 7.2 km/h
over a 1 km distance. The law will then tell us that we walk at a 3.6 km/h
velocity over a 4 km distance. Let us now use meters and seconds. 7.2 km
equal 7200 m, an 1 hour is 3600 s, so that a velocity of 7.2 km /h corresponds
to 2 m/s. We have now 2 = a/+/1000 or a ~ 63.25. It is clear that « is
not a pure number, i.e. a number that does not change when we change a
unit system. This is obvious, since on the left we have a velocity, and on
the right a divided by the square of a length, so that a must have it’s own
“dimension”, i.e. it mast be expressed as a function of length, time, mass,

1Or at least inside a proper domain in which we study the evolution of p.
2Since the (partial) derivative is given by the difference between two values of p at small
time separation §t, divided by ¢, or, more precisely given by lims;—o M

3The actual law will be more complex, and dependent on individual ﬁtness

12



Geometrical meaning of vector calculus

etc, so that also the right side will be a velocity. A velocity has to be equal
to a velocity!?
We may write an equation as
L]

V)= = L))~ (1.8)

that we read as *

‘velocity has the dimensionality of length over time”. This
means that the physical quantity velocity is obtained as the ratio between
a length and a time. Then, the dimensional equation corresponding to eq.
(1.7) is

(L)1) = [o][L] 71/ (1.9)

that we solve as
o] = [LPP/2[1) 7! (1.10)

This means that « is measured in square roots of volumes divided by time.
This looks quite complex, but as we know that a quantity measured in
kilometres becomes 103 times bigger when we measure it in meters (i.e.,
when we pass to a unit that is 1072 smaller) « will be scaled of a factor

(10%)3/2(3.6 - 10%) L = 10%/2/3.6 ~ 8.784
passing from kilometres and hours to meters and seconds. Indeed,
7.2-8.748 ~ 63.25

Let us go back to our original problem, eq. (1.6). In this form, the
equation is very intuitive, and may already tell us something interesting. If,
at time ¢ = 0, we have p(0,x) > 0 Vx, as we expect for the density of our
substance, we will have p(t,x) > 0 Vx, t > 0. Why? To have a negative
p, we need (by eq. 1.6 and assuming the function and its derivatives to be
continuous) a point with p = 0 and with p < 0. This means that starting
from p > 0 everywhere, we will never get a negative p.

Nevertheless, eq. (1.6) is written in a very peculiar way. It relates a
partial derivative to the limit of an integral. It is possible to re-write it as
an equation involving only partial derivative of p, i.e. as a partial differ-
ential equation. In our path of obtaining such a diffusion equation (or heat
equation) we will also learn the geometrical and physical meaning of vec-
tor calculus, and how to write differential equations in different coordinate
systems.

480 that the above expression 2 = a/+/1000 is actually not correct, or better valid only
after a specific set of units has been chosen.

13



1.2 Curvilinear coordinates

1.2 Curvilinear coordinates

Let us consider to points on the plane, A and B. We assume their coordi-
nates in a given Cartesian frame to be A(z,y) and B(z + Az,y + Ay). By
Pythagoras’ theorem, we know that the distance between the two points is

As = \/Ax? + Ay? (1.11)

We will often write this as
ds? = da® + dy? (1.12)

meaning that dr and dy are small and we are authorised to retain only
leading terms in Taylor polynomials and the like.

We can also use other coordinates in the plane, e.g. polar coordinates
(r,0). The relation giving the Cartesian coordinates as functions of the polar
ones is

x =rcosb, y =rsinf (1.13)

Using a Taylor polynomial, we may write the change in x as a function of
changes in r and 6, namely

Az = %AH + %Ar + higher powers of Ar, A (1.14)

As stated above, assuming variations to be small we may also write this
expression as

oz Ox
de = od0 + 5 dr (1.15)
We also have 5 9
_9% 9y
dy = 80d9+ 87’dr (1.16)
From eq. (1.13) we have
or r . dy . dy _
o = cosd, 90 = —rsinf, o sin 6, 20 = r cos (1.17)

and substitution of egs. (1.13,1.17) in eq. (1.12) gives

ds® = cos? 0dr? + r? cos® 0d0? — 2r cos 0 sin 0 + sin® Odr? + r? sin® 0dH? + 2r sin 0 cos O
= r2dh? + dr?
(1.18)

This equation tells us two important things

1. ds? may be written as a sum of quadratic terms in dr and d6, i.e. the
polar coordinates are orthogonal and no mixed terms appear

14



Geometrical meaning of vector calculus

2. the expression is anyway different from the one we obtained for Carte-
sian coordinates, since the contribution of df is weighted by a 72 term.
The reason of this should be evident from Fig. 1.1. For larger values
of r, to same variation of # corresponds a larger distance

de

Figure 1.1: A variation in 6 causes a larger displacement for larger r values.

In general, a point in 3D space may be identified by Cartesian coordinated
(x,y,2) or more general curvilinear coordinates (qi,q2,q3). We will have a
relation expressing the former as a function for the latter

(q1,92,93), y(q1,q2,93), 2(q1,q2,q3) (1.19)

We may also use the notation x = =1, y = x9, z = x3, and write sometimes
the relations 1.19 with the short hand x;(g;).

We have
2 2 8%‘ 8:61‘

ds* = dw? =Y ——dg; | ( 5—da )| = hjrdg;das (1.20)

: ~— \Jgj Oqy, —

7 2,7, 75
where we defined 9. 8
X5 0T

hip = 1.21
W= G (121)

When, as in the case of polar coordinates, the variations in the g; are
orthogonal between them, the expression above simplifies to

ds* = " hidg; (1.22)

The h; are clearly functions of the g;, so it is useful to write explicitly

ds* = h3(q1, g2, 43)dq} + h3(q1, g2, 43)dq3 + hi(q1, g2, 43)dg3 (1.23)

15



1.2 Curvilinear coordinates

In these notes we will focus on coordinates that allow us to use an expres-
sion in the form 1.23, and in particular on two useful coordinate systems;

1.2.1 Cylindrical coordinates

This coordinate system corresponds to choosing a plane, identified by Carte-
sian coordinates (x,y), and express it in polar coordinates (r,6), while the
z coordinate is left unchanged. The Cartesian coordinates are expressed as
function of the cylindrical ones through

x =rcosb, y =rsinf, 2=z (1.24)
and it is straightforward to show that
ds? = dr® 4+ r?df? + dz* (1.25)
so that
hy = 1(= hy), hg = (= hg), h, = 1(= h3) (1.26)

We will use this system of coordinates when we are facing a problem with a
particular symmetry, namely rotation around a given axis (identified by the
z coordinate).

1.2.2 Spherical coordinates

This coordinate system is used when we have a spherical symmetry in our
problem, and somehow correspond to use a combination of two polar system.
First we divide the component on the z axis from the component on the (z, y)
plane by using r and the angle 6, and then we divide the z and y components
introducing another angle, ¢. In this “second application” of the polar
transformation, the role of the distance is played by the component of r in
the plane, rsinf. The Cartesian coordinates are expressed as functions of
the spherical ones through

x = rsinf cos p, = rsinfsin p, z=1rcosf (1.27)

Both from explicit computation or geometrical considerations (the two polar
systems described above, one using r and the other one using rsinf as
distance coordinates) we get

ds® = dr? + r2d6? + r? sin 0% dyp? (1.28)
so that

hr = 1(: hl), hg = ?”(: hg), hap = rsin 9(: hg) (1.29)

16



Geometrical meaning of vector calculus

1.3 The gradient

The geometrical definition of the gradient operator V is the following. Let
us consider a function ¢ and its values in points A and B. Let us assume
the separation between A and B being given by the vector

As=B-A (1.30)

and define
Ad = ¢(B) — ¢(A) (1.31)

Then we ask the gradient to satisfy
A¢ = V¢ - As + higher powers of the components of As (1.32)
In Cartesian coordinates (2D) we have
V- As = (V) Az + (V),Ay (1.33)

At the same time, in any coordinate system we have the Taylor expansion

A¢ = Zl: SZZA% + higher powers of Ag; (1.34)
so that by comparison of eqs. (1.32,1.34) we obtain, for Cartesian coordi-
nates,

o¢
i = 1.35
(Vo) = 5o (1.35)

But this relation will not hold in curvilinear coordinates, if we want eq.
(1.32) to hold when the displacement will have a less trivial dependence on
coordinates (as in eq. 1.23).

Let us consider first the 2D polar case. The same B — A = As will be
now given by (again, keeping only first order terms)

(As), = Ar, (As)g = rAf (1.36)

where by (As), we mean component of the vector along the variation of
coordinate g. As a result, comparing eqs. (1.32,1.34) we get

0 0
(Vo) Ar+ (Vo)orAd =~ Ap ~ %Ar + a—?A@ (1.37)
and 96 1 06
(Vo) = or’ (V)o = o0

The 6 component of the gradient becomes smaller for large r to compensate

(1.38)

for the growth of the displacement (As)y.

17



1.4 The divergence

In general, we will have for orthogonal coordinates
(As); = hi(qj)Ag; (1.39)

so that by comparing eqs. (1.32,1.34) we get

1 0¢
Vo) = -7 1.40
(Vo) hi(q;) Ogi (1.40)
1.3.1 Gradient for cylindrical coordinates
_ 99 _19¢ _ 99
(Vo) =5, (Vo=1 o0, (Vo= (141
1.3.2 Gradient for spherical coordinates
99 196 199
(Vo) = R (Vo) = =90 (Vo) = roind (1.42)

1.3.3 Dimensional analysis

A gradient is physically a spatial derivative, so that its dimension should be

[$][L] (1.43)

Angles such as 6 and ¢ are pure numbers. The correct dimensionality in
eqs. (1.41,1.42) is given anyway by the division by 7 in front of derivations
that involve angles. The dimensional analysis suggests thus the correctness
of our results.

1.4 The divergence

1.4.1 Definition

We consider now the vector field (i.e., a function from R? to R?, assigning a
vector to each point in space) A(x). We geometrically define its divergence

as
Js, Alx) -ndS
. _ . _ . (g
divA(xo) = V - A(z) Vitlgo v, d= (1.44)

A few explanations are due. First of all, the notation V - A for the diver-
gence recalls us of the usual Cartesian expression ). 0;A;. Nevertheless, in
these note we prefer to write div to recall the geometrical definition and the
different forms assumed in different coordinate systems. As we did above
for eq. (1.4), we define an integral in a small volume V, centred around

18



Geometrical meaning of vector calculus

@, and let this volume go to zero (see below for a practical example of how
this is done). SV,, is the surface delimiting the volume, n is the unit vector
that is orthogonal in each point to the surface, and A(x) - ndS stands for
the integration of the scalar product of the vectors A and n. We are thus
measuring on the whole surface the outgoing component of A, and then
dividing by the volume. This definition originates from fluid dynamics (how
much fluid is flowing out of a volume).

1.4.2 Cartesian coordinates

Let us do this for the Cartesian coordinates. We operate on a small cube
centred in (zg, yo, z0) with sides Az = Ay = Az = a (Fig 1.2). We have

<t— 1 (xo¥ez) T

Figure 1.2: Small cube for divergence integral.

obviously

dr = AzAyAz = a® (1.45)
V(DO
The limit V,,, — 0 corresponds to sending a — 0 5.
We now need to integrate A(x)-n on all faces of the cube. Let us name
this faces 1,...,6 and the corresponding integrals I, ..., Ig. If, as in Fig.
1.2 we name the face in the direction of growing x as 1, we have (due to

5If we use different values of Az, Ay, Az, the derivation would be unchanged provided
that we send each of these to zero. Our proof is actually performed keeping explicit values
of these variations, so that the need to send all of them to zero results evident. One way
of getting the limit is to multiply the possibly different Axz; by a, and then send a to 0.

19



1.4 The divergence

A- n, = A
% Az
I = / / Ay | 2o+ — 5 Yoty 20t 2 dy (1.46)
79
2
Now we use the Taylor expansion
Az
A l’()"‘ 27904‘3/:20"'2’ —
Ax Ax
=A <SC() + 7, Y0, Zo) + 8yAI (330 + 7, Yo, Zo) Y+ (1.47)

Ax
0. A, <x0 + —=—, Y0, ZO) z+ O(y27 22)

where O(y?, 2%) stands for terms like x2, 32, zy or higher powers. If we
compute an integral such as

Az Ay

T=1"d:[| " cy2d 1.48
= 4], Cvdy (1.48)

2

we obtain (using for simplicity a for the value of all sides)

W~

T= O% (1.49)

\V)

Once we divide this contribution by the volume a?, we get Ca/12 — 0 as
a — 0. This is true of all quadratic terms (and hlgher). A quadratic term,
integrated on the surface, will give a quartic term that will go to zero when
divided by the volume.

We may now consider

Az Ay A
2 2 T
:/Azdz/m;ayAx <$0+27y0,20>ydy:
2 2
A

As Ay (1.50)

oAy (o + 28 Ydr | ydy=0

=0y Ag | Lo 2 » Y0, 20 Az 7ﬂy Yy =

2 2
since N
5 a2  a?

dy = — — — 1.51
/A;yy T3 (1.51)

Namely we are integrating an odd function on a symmetrical interval, so
we get 0. The same will happen for the integral involving 0, A, (xo, yo, 20)z.
Taking in account the only remaining term we have

Az
I =A, <x0 +— 5 ,yo,zo> AyAz + O(a') (1.52)

20



Geometrical meaning of vector calculus

In a similar way

IQ = —Ax <{£0— 5

A
—x, Yo, zg) AyAz + O(a?) (1.53)

the different sign being due to A - no = —A,.
Now we have

I+ 1 =

A A
- |:ACC <.’1}'0 + ;Jy())ZO) - Al‘ <1‘0 - ;7y0720>:| AyAZ + O(a’4) =
Ax

= [Az (w0, Yo, 20) + Oz Az (0, Yo, Zo)7

Ax
— (Ax (20,90, 20) — Ox Az (0, Yo, Zo)2> + O(ag)] AyAz + O(a*) =

:8:17A$ (IE(], Yo, 20>A.’I}AyAZ + 0(0’4)
(1.54)

We may repeat this for the other faces of the cube just changing names
of the variables, and we get

(02 Az (%) + 0y Ay(x) + 0. A, (x)| Az AyAz + O(a®)

divA(x) = (11_1)1[1) ArAyA- (1.55)
and thus, in Cartesian coordinates
divA =Y 94, (1.56)

1.4.3 Gauss theorem

From the (coordinate independent) definition eq. (1.44) we have, for an
infinitesimal cubic volume §V

divA(x)6V = A(x) -ndS (1.57)
Ssv
The integral over a finite volume may be defined as the integral over a
partition of very small cubes, in the limit of the volume of all cubes going
to zero. Namely, for a finite volume V we have

/ divA(x)dx = divA(x)V; =) A(x) -ndS (1.58)
|4 i i /S

In general, the sum of the integrals over the surfaces Ssy, of the cubes
that give the total volume V would be different from an integral over the

21



1.4 The divergence

surface Sy, due to the contribution of the internal surfaces of the cubes.
But due to the nature of the integrand, all internal terms will be present
in two neighbouring cubes that have opposite n, and thus all these terms
will cancel, leaving only the integral over the external surface. This result
is called Gauss theorem

/ divA(x)dx = | A(z) ndsS (1.59)
% Sv

1.4.4 Curvilinear coordinates

To understand how to generalise in the curvilinear coordinate case, let us
check the cylindrical case described in Fig. 1.3. Our small volume will be

€

Figure 1.3: Small volume for divergence integral in the cylindrical coordinate
case.

now characterised by having faces that are surfaces with constant r, 6 or z.
In each point of 3D space, vectors orthogonal to such surfaces define a set
of orthonormal vectors, that we may call e,, ey, e,. These vectors (with the
exception of e,) are different in different point of space, but at any given
point they define a basis for the vector space at the location. Thus any
vector A may be written as

A =A.e,. + Ageg + Ae, (1.60)

We may name again the faces of our small volume from 1 to 6, and for
example, as shown in Fig. 1.3, name 1 and 2 the faces at constant r. We
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Geometrical meaning of vector calculus

will clearly have n; = e, and ny = —e,. We may repeat the operations
performed above in the Cartesian case remembering that all considerations
involving Taylor expansions will be unchanged since for a general function
9(q)

Ag = 0,9Aq (1.61)

applies also to curvilinear coordinates. On the other hand, integration in a
curvilinear coordinate has to be multiplied by A, to take in account the fact
that the displacement in the curvilinear direction is hyAgq 6. For example,
an integral in 6 will involve a multiplication by the locally constant value of

r.
If our volume is centred in (rg, 6y, z9) we have
A [ Ar]
I = A, <r0 + ;,00,z0> ro + 7’“ AOAz + O(a?) (1.62)
and ) .
A A
I = A, <7“0 - ;,00,z0> ro — 7’" AOAz + O(a%) (1.63)

If we now consider the auxiliary function
fr(r,0,2) = Ay (1,0, 2)r (1.64)

we may write

A A
It + Iy = | fr(ro + TT,@O,ZO) — fr(ro — %790720) AOAz + O(a*) =

= 0, f(r0, 00, 20) ArAOAZ + O(a?)
(1.65)

The contribution of these two faces to the divergence is thus

. L+ 1 . I + 1 1
1 - ;= TN AaA. - O Ar » V0> L.

a50 [y, dx a0 roArAOAz roa (rAr(r0, 60, 2)) (1.66)
0

How can we generalise to other curvilinear systems? The volume will be
given in general by

/ dx = h1(q1, 92, q3)h2(q1, 92, g3)h3(q1, 42, G3) (1.67)
Vi

0

5Obviously, this result agrees with the more formal and rigorous one that performs the
integration taking in account the Jacobian determinant of the coordinate transformation.
Such a determinant is indeed trivially hihohs for orthogonal coordinates.
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1.4 The divergence

while the auxiliary function f; generated by the integral on the two faces at
constant ¢; has contribution h; with j # 4 to the integral, so that

filaj) = Ai(qy) [ hi(ar) (1.68)
J#i
and finally
;0 fi
divA — ZH h{ (1.69)
or, in an explicit way
1

divA(qi, g2, q3) =
(q1,42,43) h1(q1, 42, 43)h2 (a1, 42, 43)h3(q1, 42, G3)

01[A1(q1,q2,93)h2(q1, g2, 93)hs(q1, g2, 43)]+ (1.70)
+ 02[A2(q1, 92, g3) P (q1, g2, g3) 3 (a1, g2, g3) ]+
+ Oa[ A3 (1, 2 08) b (@1, 02, 05) o (a1, 02, 45|

Cylindrical coordinates

For cylindrical coordinates eq. (1.70) gives
1
divA =~ |0,[rA,] + 05l 4] + 0. [rAz]} (1.71)

where A and its components are functions of (r,6,z). Taking out some
variables from the partial derivative we get

1 1
divA(r,0,z) = ;871[7“147"(7“, 0,z)] + ;89[149(7”, 0,2)] + 0,A.(r,0,z) (1.72)

Spherical coordinates

For spherical coordinates eq. (1.70) gives

1

2 . .
oy Op[r*sinbA,| + Op[rsin 6 Ag] + &p[rA@]} (1.73)

where A and its components are functions of (r,6,¢). Taking out some
variables from the partial derivative we get

. 1 1 ) 1
leA(Tv 97 90) = ﬁar [TQAT (7", 97 90)]_‘_ 969 [Sln 0A9 (’l“, 07 @)]‘FWGKPAQO (’l“, 07 30)

7 sin
(1.74)

1.4.5 Dimensional analysis

You can easily check that the divergence has the expected dimensionality of

AL (1.75)
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Geometrical meaning of vector calculus

1.5 The Laplacian

Since the gradient, when applied on a function, generates a vector, we may
apply the divergence operator on the gradient. In such a way, we will define
a new operator, the Laplacian

div(V¢) = V3¢ (1.76)

Since both the gradient and the divergence have been defined in a geometri-
cal, coordinate independent way, also the Laplacian will have a geometrical,
coordinate independent definition. Before investigating it, let us obtain its
expression in an arbitrary (orthogonal) coordinate system From (eq. 1.40)

(Vo) = Z ,i_&rb (1.77)

and (eq. 1.69)

divA — ZH@hf (1.78)

where the f; were defined in eq. (1.68), we obtain

AL

24 _
Vo= Hihi

(1.79)

The above is a short hand for

2¢ = 1 h2h3 h1h3 h1h2
Vip = Iialis [81[ I 09| + 02 ) Dap| + 03 I D3¢ (1.80)

where again we should remember that the h and ¢ are functions of the g;.

1.5.1 Cartesian coordinates

In Cartesian coordinates all the h; equal to 1 and we have
V2(x,y,2) = O0(x,y, 2) + Oy d(w,y, 2) + 02 ¢(x, y, 2) (1.81)

1.5.2 Cylindrical coordinates

In cylindrical coordinates, substituting the values of the h; and bringing out
of derivatives variables when possible, we get

V3(r,0,2) = 0.(r0,6(r,0,2) + 5 ORo(r,0,2) + D20(r,0,2)  (1.82)
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1.5 The Laplacian

1.5.3 Spherical coordinates

In spherical coordinates, substituting again the values of the h; and bringing

out of derivatives variables when possible, we get

1 1 .
v2¢<r7 07 QO) = ﬁaT(TzaT(b(ra 07 QO))—FWa@(Sln 980¢(r7 97 ()0))+

2
inf 72 sin? 0890(1)(7'7 0.)

(1.83)
1.5.4 Dimensional analysis

You can easily check that the divergence has the expected dimensionality of
[0][L] (1.84)

1.5.5 Geometrical meaning

In section 1.1 we suggested the form

Fip(t, x) = w(p(t,x) — p(t, x)) (1.85)

for a diffusion equation, where p stands for an average over a small volume
centred in x. Since then we got a good experience on small volume integra-
tions and Taylor expansions. Let us try to compute ¢ for a cube of size a
centred in x¢ = (zo, Yo, 20). Using Cartesian coordinates we have

P(z,y, ) = ¢(x0) + 0xd(x0)(x — 0) + 0xP(y0) (Y — Yo) + 020(x0)(2 — 20)+
D20y (x0)(z — 20)(y — yo) + 020-90(x0)(x — x0)(z — 20) + 8O- (x0)(y — yo)(z — 20)+

SO0 (x0) (& — 0)? + 226k y — o) + 50%0(x0) (= — 20’

+ cubic terms
(1.86)

Now we write, remembering that the volume of the cube is a?, and calling
Arx =z — w0, Ay =y — 5o, Az = 2z — 20,

g
o= [Ldn [Ty [ otayds -
-5 g g

a a
2 2

= ¢(z0, Y0, 20) + alg(///linear terms in Az, Ay, Azd(Az)d(Ay)d(Az)+
///terms of the form (AzAy), (AyAz), (AzAz)d(Az)d(Ay)d(Az)+

;/ / / (020(x0) Az? + D26(x0) Ay + D26(x0) A2?)d(A)d(Ay)d(A2))
(1.87)
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Geometrical meaning of vector calculus

From the trivial result

a

/2 qdg =0 (1.88)

2
(and Fubini’s theorem, namely the possibility of integrating first in one
variable, etc.) we obtain that integrals involving the linear terms and terms
such as xy give zero. We are left with integrals in the form (thanks again to
Mr. Fubini, since the integral in the two variables unrelated to the integrand
gives the face area a?)

a2 5 ) ) a2 @ 3 ab
— dg=—0? — = — 1.
| dhotwodin = Goiots) M_; “ s
Substituting in eq. 1.87 we get, at the lowest order in a,
= a’ 2 a’ 2
P(x0) — d(x0) = 2 Zaz P(x) = 21V P(x) (1.90)

7
Thanks to our geometrical definitions, this will be true in any coordinate
system, and the diffusion equation may be written as

Op =V7p (1.91)
A simple dimensional analysis shows now that

] = [L]*[T) (1.92)

1.6 Another approach to diffusion

Let us consider a fixed volume V. The amount of our “substance” in V is

given by the integral of p over the volume”.
Qu(t) = [ olt.x)ix (1.93)
Qv is a function of the only time. Its time derivative is
dQ:Z/t(t) = /V Op(t,x) dx (1.94)

If we assume that the substance is “locally conserved” meaning that it can-
not disappear but only move to a different place, then the change in time of

"For example, p may be the electric charge density. The dimensional analysis tells us
then that if the dimension of charge is [Q], the dimension of p has to be [Q][L] ™%, so that
the integral in eq. (1.93) has the proper dimension. p gives a charge only after integration.
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1.6 Another approach to diffusion

Qv has to be given by the flux of it trough the surface of V. Imagine now
that p gives the density of a liquid. This liquid moves in a cylinder (pipe)
of section A with velocity v. This means that in time 7" an amount pvT A
of fluid will exit the pipe (Fig. 1.4). Once we divide by time, the “change
of amount of water in time” is pvA. If now the “mouth of the pipe” is not
orthogonal to the flow of water, although the surphace increases, the flow
of water does not change. We can thus see that the flow is not given by the
product of the velocity by the area, but by Apv - n, where n is the outgoing
unit vector orthogonal to the surphace A. The product Av - n gives us, in-
deed, the projection of the area in the direction of the water flow and leads
us back to the same flow obtained for the orthogonal mouth (refer also to
Fig. 1.4). In the discussion above we considered uniform velocities and flat
surphaces, but we can generalise by taking an integral over “many infinites-
imal flat surphaces and uniform velocities” (the usual Riemann definition of
integral).

vT

Figure 1.4: The amount of water that will exit the pipe with the oblique

red mouth in time 7' is given by the blue parallelogram. The height of the
parallelogram is h = L cos ), where cosf = (v - n)/v.

We define a flux vector

®(t,x) = p(t,x)v(t,x) (1.95)
and write
dQc‘l;(t) = _/sv ®(t,x) -ndS (1.96)

The sign is negative because a positive flux in the direction of n causes @)
to decrease. Now we use Gauss theorem (eq. 1.59) to obtain

dQv(t)
dt

:—/ div®(t,x) dx (1.97)
v
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Geometrical meaning of vector calculus

so that, using eq. (1.93)

/ Op(t,x) dx = —/ div®(t, x) dx = / (Op(t,x) + div®(t,x)) dx =0
v 1% 1%

(1.98)
This has to be true regardless of the volume V', so that we need to have®.

Op(t,x) + div®(t,x) =0 (1.99)

From eq. (1.32) we know that the gradient gives us the direction in which

9. We previously suggested

we have the maximum growth of the function
that p locally grows if its integral in a small surrounding volume is higher
than the local value. We may also think that “p flows where p is minimum,
or

®=-—Vp (1.100)

Here the dimensional analysis tell us that
[P[LNT) Y = L] o] = ] = [L°[T) (1.101)

Substituting eq. (1.100) in eq.(1.99) we obtain the same form of the diffusion
equation
op =~V?p (1.102)

This equation is often called heat equation since p may stand for termic
energy (temperature).

8Otherwise, we could integrate in a small volume around the area where the integrand
is not zero, and obtain a non zero integral (these kind of arguments are not completely
rigorous due to the possibility of having the integrand different from zero an a set of zero
measure

“Imagine to use vectors of fixed length As = 1 in eq. (1.32). The maximum growth
will be given for a As in the same direction of the gradient.
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Separation of variables
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Chapter 2

Separation of variables in the
heat equation

2.1 Boundary conditions

Let us consider the diffusion equation in Cartesian coordinates

iplt,,y,2) =7 |O20(t. 3y, 2) + O2plt, 0,9, 2) + Dpltwy, )| (21)

This equation express a relation between partial derivatives. A function p
that represents a solution of the (modelled) physical problem needs to satisfy
this relation in every point of a given area of space and time!.

We may for example consider the time evolution of the temperature on
a metal bar. The bar has a finite length L. The initial temperature (f = 0)
is known for each € [0, L] 2. We also need to provide, in order to obtain

a unique solution for the temperature at ¢ > 0, information about “what

Modern physics speaks about space-time. This is due to the fact that in Relativistic
physics, time plays a role similar (although not exactly equal) to the other coordinates.
As we may “mix” the spatial coordinates x,y,z by performing a rotation, according to
Relativity we may also “mix” time and space, just by moving at constant velocity. We
do not realise that this mixing happens because the effect is related to the ratio v/c
where v is the velocity of movement and ¢ the velocity of light, and v < ¢ for common
life velocities. The physics of Newton is obtained indeed from the physics of Einstein in
the ¢ — oo limit. Eq. (2.1) deals with time and space derivatives in a different way,
and thus it is not a relativistic equation. Indeed, according to eq. (2.1), diffusion may
happen at infinite velocity. The wave equation of electromagnetism (light propagation),
[0F — c(02 + 85 +02)]A = 0, is a relativistic equation (the minus generates the difference
between, time and space in Relativity, while a dimensional analysis easily shows that c
is a velocity). It was indeed reasoning about light that Lorentz, Poincaré and Einstein
developed the (Special, i.e. not including Gravitation) Relativity theory.

2We approximate the problem as a 1D one, i.e.we consider the bar “infinitely thin”.
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2.1 Boundary conditions

happens at the bars ends”, x = 0,z = L. This information will be needed
and will be enough to solve the problem. Why?

Let us remember the situation that we face when we want to solve an
ordinary differential equation. For a first order differential equation, such
as the equation for radioactive decay

AN (t)

“ar —YN(1) (2.2)

we have a general solution
N(t) = Ae™ " (2.3)

The solution for a specific problem is obtained by noticing that N(0) = A.
So if initially we have Ny atoms of the radioactive material, the solution is

N(t) = Noe (2.4)

If we have a second order equation such as the Harmonic oscillator one

d*X (t) 2
2 -V X(t) (2.5)
the general solution is
X (t) = Asinwt + B coswt (2.6)

We have now two constants, so we need two conditions to specify our solu-
tion. The usual way of doing it is to notice that?

dX (0
X(0) =B, 0) =wA (2.7)
dt
so that, calling X(0) = Xy and d)((igo) = Vjp, the solution for a specific
problem is
X(t) = % sinwt 4+ X cos wt (2.8)
w

But we can solve the oscillator problem in another way, for example by
asking to have X (0) = Xy and X (7") = X7 so that

Xpr — XgcoswT
sinwT’

X1 = AsinwT + XgcoswT = A = (2.9)

provided that wT # nw. In the latter case, we have to check the equation
before dividing by the sine, and we get

X7 = X (2.10)

3You should perform a dimensional analysis for each equation you see. They are always
useful in checking the validity of your results.
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Separation of variables in the heat equation

so that no other condition may be satisfied.

We have thus seen that for a second order ordinary differential equation
we can get a solution either by specifying the initial value of the function and
of its derivative?, or by specifying its value at two different times. Neverthe-
less, while the first method always leads to a solution for our problem?®, as
we have seen this is not true for the second approach. The second approach
may nevertheless be useful to restrict the possible values that the model’s
parameter may assume. For example, let us ask Xg = 0 and Xp—; = 0. If
we want our solution to be different from zero everywhere we will need (left
of eq. 2.9) w = nw. We will use this method very often in the following.

Before going back to partial differential equations, let us notice that from
the general solution eq. (2.6) we may obtain the expression for the derivative

dX(t

dt() = w(Acoswt — Bsinwt) (2.11)
We may thus specify the state of our system also by asking d);io) = W,
d)fiiT) = Vr, i.e. by fixing the derivative (velocity) at two different points.

Let us analyse Fig. 2.1. We want to obtain the solution in the interior
of the red area, where p will satisfy eq. (2.1). It looks reasonable that we
may need to specify what happens on the boundary of the region (boundary
conditions or BC). We need to know the initial state of the system

p(0, ) (2.12)

but also what happens, for each ¢, at the borders. By studying the tempera-
ture of the bar, we are assuming that the bar itself follows the heat equation,
but what happens around it may be changed in different ways. For example,
we could put the bar in contact with one or two different external bodies at
x =0 and x = L. The temperature of these bodies could be fixed (for exam-
ple, the bodies being much larger than the bar) or change in time (because
connected to some thermic engine, or just because environmental tempera-
ture changes with time). Or we could insulate the ends in such a way that
heat does not flow (or, in case the equation describes the diffusion of a gas:
at the ends we could have walls that do not let the particles pass).

4For a physical particle, initial position and velocity. Since Newton’s equation are
second order, this means that the state of a system in classical physics is given by specifying
the initial value of all particles and velocities (or, in a more general coordinate system,
momenta).

5This is a very informal discussion, in which we assume all functions to be as well-
behaved as possible. Refer to any book on differential equations for a more formal and
rigorous treatment.
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2.1 Boundary conditions

I

0 X L

Figure 2.1: Space and time diagram for the problem of diffusion of heat on
a 1D bar.

It is clear that, for the same behaviour given by eq. (2.1) in the prescribed
area, the solution would be different given different boundary conditions, so
that the importance of such conditions should be intuitive from a physical
view point. Regarding which kind of boundary conditions are necessary
we may, in a completely informal and not rigorous way, use the following
argument based on a comparison with ordinary differential equations.

Let us wonder what happens at fixed x = T, i.e. on the green line of Fig.
2.1. Since z is fixed, we may expect our equation to behave as

dp=(t)
dt

= fx(t) (2.13)

so that we need just an initial condition for it, p(t = 0,Z). But since we
want to solve the problem for all z € [0, L], we actually need to provide the
function

p(0,2) = fi—o(x) x € [0, L] (2.14)

But obviously we are not dealing with a first order equation in ¢, since
also what happens on z is “dynamical”. If we try to think about what
happens at fixed t = ¢, i.e. on the blue line of Fig. 2.1, we expect an
equation like

d* p(x)
dx?

= fi(z) (2.15)
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Separation of variables in the heat equation

We thus need two conditions at fixed ¢ to specify the solution, since we
are dealing with a second order equation. For example, we can fix the
temperature at * = 0 and = = L for all values of t > 0

p(O,t) = fﬂc=0(t>a p(L,t) = fx:L(t)a t>0 (2'16)

Or we can fix the flow of temperature on the ends. We have seen (eq. 1.100)
that the flow is related to the gradient, i.e., for our 1D problem to the
derivative. Fixing the flow amounts thus to provide the derivative

dp(0, )
dt

dp(L,1)
dt

= ga=0(1), = gu=1L(t), t>0 (2.17)

a choice motivated both by our understanding of the physical problem, and
by our discussion on the conditions needed to specify second order problems.
Insulating the bar, for example, would correspond to fix

9a—0(t) = gz=1,(t) =0 vVt >0 (2.18)

2.2 1D heat equation with fixed temperature ends:
dimensional analysis

We are almost ready to solve our first PDE problem, but before doing it let
us define it properly. We want to study the diffusion of temperature on a
1D bar®, while keeping the ends at a fixed (zero) temperature’.

The problem is specified by the equation

dup(t',a') =05 p(t', a') (2.19)
initial condition
p(0,2') = fi—o(2') 2 €0, L] (2.20)
and boundary conditions
p(0,t") = p(L,t") =0, >0 (2.21)

As a first step, we start by simplifying our problem through an appro-
priate change of variables (this is the reason we called the above variables z’
and t'... since we want to get rid of them as soon as possible!). As it will be

5These 1D problems are obviously idealisations, but they are very useful in understand-
ing mathematical techniques in simple settings.

"Or at a given temperature T. In such a case, we can re-define our temperature scale
sothat p=T —T.
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2.2 1D heat equation with fixed temperature ends: dimensional
analysis

clear soon, in order to fix the the value of the function to zero at the ends,
it will be handy to work on the interval [0, 7]. Let us thus define

L
z ="y =1 == (2.22)
L T

so that x will assume values between 0 and L . Since we changed variables,
also the form of the equation will change. Defining o = w/L we have

0 0 ox' 0

L _ Yo _ Y 2 _ _ 252 ‘
5~ 92 0~ s = 05 = aly(a0y) = a“0; (2.23)

and the equation becomes
at’p(tlv 1’) = 7@282,0@, .’IJ) (224)

Now we notice that if we if we define

t =Bt = Op = PO, (2.25)
the equation becomes
va? 2
The trick is now to define 8 = ya? so that the change in the time variable
is ) )
s L
t=~y—t =t =" 2.27
1732 - (2.27)
and the equation becomes

We may call this the a-dimensional heat equation since, from egs. (1.101,2.22,2.27),

L] [+]°
M=m:MO MﬂWWW=MO (2.29)

—

where with the the notation [*]0

we just mean a pure number, independent
on unit systems.

The form of the equation got simplified. We will now proceed to find
a solution for p(t,x) from which we will be able to obtain the solution
in the original dimensional variable through the transformation rules egs.
(2.22,2.27). Obviously, the same rules may also be used to express the
boundary conditions egs. (2.20,2.21) as functions of the a-dimensional vari-

ables (¢, x).
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Separation of variables in the heat equation

2.3 Separation of variables for the 1D heat equa-
tion

The separation of variables method is based on assuming that the solution
may be written as the product of a function of ¢t and =

p(t,x) =T(t) X (x) (2.30)

The method is basically based on trusting that the method will work. We
will follow the consequence of the ansat?® eq. (2.30), perform a few doubtful
steps like dividing by some function without worrying if it is zero or not,
and finally arrive at a general solution for our equation. Only after we will
reach the solution we will discuss about when this method may work or not.
Let us substitute? eq. (2.30) in eq. (2.28)

HTt)X(z)] = 2[T(H)X ()] = X (2)0,[T(t)] = T(1)I2[X (2)
(2.31)
Let us now divide both sides by T'(¢) X (x) to obtain

OT(t) _ 9;X(x)
T(t)  X(z)

(2.32)

On the left we have a function of ¢, and on the right a function of x, and
they are equal everywhere, i.e. for each arbitrary x € [0, L] and ¢ > 0. From
this follows that both sides of the equation have to be constants!'?,

arT(t) ., _ 9X(z)
50 =C=-% @) (2.33)
and
T (t) = CT(t) (2.34)
02X (z) = CX(z) (2.35)

We reduced our problem to two independent ordinary differential equations!
We note that if eqs. (2.34,2.35) are true for all ¢, z we have

Op=0y(XT) = X0, T = CXT =T X = 9*(TX) =0 (2.36)

8A German word for an educated guess.
“We will use the partial derivative symbol also when it acts on a function of a single
variable.

Tmagine we have f(y) = g(2) for two independent variables y and z. Assume we have
fly1) = a # b= f(y2), i.e. fis not constant. Now, if we pick up a value z1, we want to
have g(z1) = f(y1) = a, since the equality has to hold for arbitrarily picked values of y
and z. But then g(z1) = a # b = f(y2) and a contradiction arises.
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2.3 Separation of variables for the 1D heat equation

so that we actually do not need to worry about divisions by zero.

E

q. (2.34) is trivially solved by

T(t) = A'e“! (2.37)

We proceed now to study eq. (2.35). We know that the behaviour of

this equation depends on the sign of C'. Let us consider the three possible

cases

(D)

(IT)

C=0
We have
PX(2)=0=>0,X(x)=A= X(z)=Az+ B (2.38)
so that
p(t,x) = Ae®(Ax + B) = Az + B (2.39)

where we defined A = A’A, B = A'B. If we want want eq. (2.21) to
hold, we need to have

p(t,0)0=B=0, plt,mr)=Ar+0=0 =A=0 (2.40)

The C = 0 case led us to the solution p = 0. This is trivially a solution
of the heat equation with the prescribed boundary conditions, but it
can satisfy eq. (2.20) only if fi—o(z) =0 Vx € [0, 7].

Cc>0
Since C is positive, we re-name it as C' = A\2. Now we have from the
theory of linear differential equations

O’X (x) = N2X (z) = X (x) = Ae™ + Be ™ (2.41)
and

plt,x) = AN X () = X1 (AN + Be ) (2.42)
thanks to usual re-definition of the constants. The term e*t is obvi-

ously positive, so the conditions eq. (2.21) are equivalent to ask for the
term in the parenthesis to be null (we call this term X by absorbing
A'in X)

0=X(0)=A4eN +Be = B=-4 (2.43)

and
0=X(m)=A(™+Be )= A=0 (2.44)

where the last result obviously follows since for A > 0 we have Amw #
— A7 and the exponential is strictly growing. The only possible solution
is again p = 0, that would nevertheless lead to a contradiction since
we had asked C' > 0. No solution is thus found for C' > 0.
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Separation of variables in the heat equation

(IIT) C <0
Since C is negative, we re-name it as C' = —\?. Now we get

02X (z) = —N2X () = X (z) = Asin(A\z) 4 B cos(\x) (2.45)
and
p(t,x) = A’e*)‘%X(:c) = e*)‘Qt(A sin(Az) 4+ B cos(\z)) (2.46)

Again, the time dependent factor is positive, so in order for eq. (2.21)
to be true we need to ask X = 0 (and anyway, eq. (2.21) need to be
true V¢t > 0, and thus is determined by X).

X(0)=B=0= X(x) = Asin(A\z) (2.47)

and
X(m) = Asin(Ar) =0 (2.48)

If we want to avoid to get again a null solution, we have to ask A € Z
so that sin(A7) = 0 (we now see the reason of our change of variables
in ). We note anyway that A\ = 0 has to be avoided because it will
lead to the C' = 0 case, while if A = —n < 0 we have (—n)? = (n?) and

X(z) = Asin(—nz) = —Asin(nz) = A" sin(nz) (2.49)

so that negative integers just produce the same solutions given by
positive ones. We may thus limit ourselves to

p(t,x) = At sin(nx), nelN (2.50)

The C' < 0 case just led us to solutions for our partial differential equation,
eq. (2.50). This solution may also be re-written using the original variables

(75,, l‘/) asll
2. 2

p(t',2') = Ae”" 7 sin ("T”:c’) ., neN (2.51)
Nevertheless, eq. (2.50) gives, for ¢t = 0,
p(0,z) = Asin(nz) (2.52)

and thus cannot satisfy eq. (2.20) unless f;—¢ is proportional to a sine
function. This is better than a null function, but is not general at all!

"1You may check that the arguments in the sine and exponential of eq. (2.51) have no
dimension. This is correct and necessary (such functions may be written as power series
of their arguments and thus it would make no sense to have arguments with dimensions).

41



2.3 Separation of variables for the 1D heat equation

2.3.1 Separation of variables and linearity

Nevertheless, we can use solutions in the form eq. (2.50) to build new
solutions. This is due to the fact that the heat equation is linear, and the
problem that we have specified is homogeneous both in the equation and in
the boundary condition. Let us see what this means.

Linearity

Let us assume we have an equation such as
D[f(x)} =0 (2.53)

Here f is a function from R™ — R and D is an operator, i.e. a function that
operates on a function to produce another function (e.g. a derivative). We
say that D is linear if given two functions f and g and numbers «, 3, the
following holds

Dlaf(x) + B9(x)] = aD[f(x)] + BD[f(x)] (2.54)

An example of a linear operator is the multiplication by a function h(x)

Dlof(x) + Bg(x)] = h(x)[af(x) + Bg(x)] = ah(x)f(x) + Bh(x) f(x)

= aD[f(x)] + D[/ ()]
(2.55)

A partial derivative, or a second partial derivative, is obviously also lin-
ear'?, and operators that include sums of derivatives of different orders and
multiplications by functions are also linear, as can be easily checked.

Obviously, not all operators are linear. D[f] = f? is clearly not linear,
since D[af] = a?D[f]. Also adding a function D[f] = f + h is not linear,
since D[f +g]=f+g+h#D[f]+ Dlg| =g+ [+ 2h.

Nevertheless, our differential equation (2.28) is in the form eq. (2.53)
with the linear operator!'?

D=9, — 0 (2.56)

As a result, if we have two solutions for our problem , D[f] = 0 and
Dlg] = 0, we can get a third solution just by a combination of them,
Dlaf + Bg] = 0.

2Linearity is a property of derivation.

13In section 1.6 we assumed p to be conserved, namely not created or destroyed. If
we quit this assumption we get a diffusion equation with a source, in the form D'[f] =
0, D'[f] = D[f] — h, and we lose linearity. Equations with such terms are called not
homogeneous.
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Separation of variables in the heat equation

Homogeneous boundary conditions

Until now we did not touch the problem of the boundary conditions. We
have seen that if we have two solutions p; and py that satisfy eq. (2.28),
then also

p3(t,z) = api(t,z) + Bpa(t, x) (2.57)
will satisfy eq. (2.28). But our problem includes also boundary conditions.
If such conditions were, for example, in the form

p(t,0) = frmo # 0 (2.58)
and if p; and pg satisfied such conditions, we would have
p3(07x) = O(pl(O,ZL‘) +ﬁp2(0¢$) = (a"i'ﬁ)fx:() (259)

which is in general not equal to f.—g.
The process of combining two solutions to obtain a third will thus be

possible to apply only when we have homogeneous boundary conditions such
14

p(t,0) = p(t,L) =0 (2.60)

Oxp(t,0) = Opp(t,L) =0 (2.61)

2.4 Fourier series and general solution to the 1D
heat equation with homogeneous boundary con-
ditions

2.4.1 General solution

For our problem we may thus combine different solutions in the form eq.
(2.50) to obtain functions that are more general than simple sine functions.
But, how general can we get?
At t =0, eq. (2.50) becomes
p(0,z) = Asin(nz), nelN (2.62)

so that the most general initial condition that we may express with the
method of separation of variables is

p(0,2) = Z A, sin(nx) (2.63)
n=1

MWe may always deal with boundary conditions in the form p(t,0) = fz—o = ¢ by
re-defining the zero of our function, i.e. by studying p’ = p—c. This function may assume
also negative values, but it is described by the same equation that describes p.
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2.5 Computation of coefficients

An important theorem in functional analysis says that a function which is
enough well behaved!® and assumes f(0) = f(7) = 0 may be approximated
to any degree by the Fourier series eq. (2.63). We will assume our initial
conditions to satisfy these criterial®. We thus state that the general solution

to our problem is written as

[ee]
p(t,z) = Z Ape sin(nx) (2.64)
n=1
in a-dimensional variables, and
= _nZn?yt/ nmw
p(t', ') = ; Ape” L7 sin (Tx/> (2.65)

in the original, dimensional, ones.

2.5 Computation of coefficients

The formula (2.64), although theoretically important, is by itself scarcely
useful since initial conditions are not given in the form eq. (2.64). We need
thus a way to obtain the coefficients A,,, that completely specify the solution,
from the initial condition. The process is based on a formal analogy with the
process that we may use to obtain the coefficients of a vector in a given basis
through scalar products, and is based on the definition of a vector space of
functions and a corresponding scalar product. We will deal with the theory,
although in a largely non rigorous way, in a subsequent chapter, but for
the moment we will limit ourselves to the introduction of the computation
technique.
We first notice that

T T if _
/0 sin(nz) sin(mzx)dz = génm = { S jlf :7& :; (2.66)
This result is based on the following trigonometric relations!”
sin(x + y) = sin(z) cos(y) + sin(y) cos(z) (2.67)
cos(x + y) = cos(x) cos(y) — sin(z) sin(y) (2.68)

5For example, piece-wise continuous and differentiable

Functions in classical physics are considered in general smooth, i.e. possible to differ-
entiate infinite times, although sometimes piece-wise continuous functions may be used to
model some initial conditions.

7 A straightforward but tedious analytical proof may be based on Euler formulae.
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Separation of variables in the heat equation

From these we obtain, by substitution and using cos(—z) = cos(z),
sin(—x) = —sin(x)

1
cos(x—y)—cos(z+y) = 2sin(z) sin(y) = sin(z) sin(y) = 5 [cos(m—y)—cos(a:+y)]
(2.69)
Our integral becomes

/07r sin(nx) sin(max)dr = % /Oﬂ cos((n — m)x)dr — % /07r cos((n +m)z)da

(2.70)
Now, if n # m, we can use
/ " cos(ka) = & [sin(ka)]" =0 (2.71)
0 k 0
valid for integer k # 0, and obtain
/ sin(nz) sin(ma)dz =0 (2.72)
0
If n =m, eq. (2.69) becomes
NVECHER
sin(x)* = =3 [1 — cos(2ac)} (2.73)
so that
T 1 (7 1 (7 1
/ sin?(nx) = / dx — / cos(2nx)dr = —(m +0) = T (2.74)
. 2 /s 2 /s 2 2

We may get rid of the factor m/2 by defining the functions

sp(z) = \/zsin(mc) (2.75)

/07T Sp () S ()dz = Opy (2.76)

Now, just by redefining the A,,, we may re-write eqs. (2.63,2.64) as

so that

2) =Y Ansn(z) (2.77)
n=1

x) = ZAne_”Ztsn(m) (2.78)
n=1

The initial condition for our problem is given by

p(0,z) = fizo(x Z Apsp(z (2.79)
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2.6 Time dependence

We know that it can be written as a Fourier series, but we explicitly have
only fi—o(xz). We may compute the integral

[ sn@fiate = [ Sm(ﬂﬁ)i/lnsn(x) . ;_O:IA” [ snesae) = A

(2.80)
The general solution may be thus written as
p(tvx) = Z |:/ Sn(x)f(x)tzo] e_n2t5n(x) (2'81)
n=1 0

We used the a-dimensional equation in order to develop the theory, but
we may now see how to write down a procedure to get the coefficients di-
rectly from the dimensional initial condition. Starting from eq. (2.66), and
changing variables using eq. (2.22) we get, from dz = adz’

2 L
Opm = — / sin(naz’)sin(ma z’)a d’ (2.82)
T Jo
or ;
L
/0 sin (n%x’) sin (m%ﬂ) da’ = §5nm (2.83)

that has the proper dimension (an integral over distance of a pure number
give a length). Defining

sk(z)) = \/zsin (%x') (2.84)

L
/ sk(x)sk (2 dz' = 6pm (2.85)
0

and, repeating the discussion above, the general solution in dimensional

we have

variables may be written as

27r2’ytl

p(t',a') = i_o:l [ /O st (w’)f(fv')tﬂ} e T sk (2.86)

2.6 Time dependence

Let us write again the general solution in the form

p(t,x) = Z Ape™ ™ sin(nx) (2.87)
n=1
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Separation of variables in the heat equation

We have highlighted the time dependence in blue. Since n # 0, all this
terms go to zero in the limit ¢ — oo, the terms with high n decaying faster
than those with low n. This shows that

tli}m p(t,z) =0 Vz € [0, 7] (2.88)

and as a result, the identically zero function is the only stationary solution
of the problem, where by stationary solution we mean a solution that does
not depend on time

p(t, z) = pstat () (2.89)

This is not surprising, both from a mathematical and physical viewpoint.
Mathematically, we have

Orpstat () =0 = 8§Pstat(33) = pstat(x) = Az + B (2.90)

but since we have p = 0 at 0 and 7, we necessarily obtain zero everywhere.
Physically, we may expect the bar to continually lose energy at the ends
until the zero solution is reached!®.

2.7 Flux boundary conditions

2.7.1 Stationary solution

Let us consider the solution for the stationary (time independent) problem
in case the boundary conditions state that we have zero flux at the end, or
(eq. 2.61)

Ozp(t,0) = Opp(t,m) =0 (2.91)

The argument leading to eq. (2.90) does not depend on boundary conditions,
so that the solution is in the form pgat(x) = Az + B, with Oppstat(z) = A.
Fixing A = 0 satisfies the flux conditions at both ends, so that the solution
for the stationary problem is

Pstat — B (292)

There is no way to further specify the solution based on boundary conditions.
If prepare the bar at constant temperature B, and insulate the ends, the

8The same applies obviously also if this is a “re-scaled” zero, for example if our bound-
ary conditions for the heat equation correspond to keeping the ends at the zero of the
Celsius scale, instead of the absolute zero. In this case, the bar may gain energy from the
ends, since the function may assume negative values, but the validity of the result does
not change.
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2.7 Flux boundary conditions

bar will stay at B. This is obviously very understandable and intuitive also
from a physical viewpoint. Nevertheless, in section 2.6 we have seen that
the p = 0 stationary solution is also the t — oo limit for any general solution
of the problem in which the ends where kept at zero. Is also the solution
eq. (2.92) a limit for large t? And if it is, how does B relate to the initial
condition?

Physical intuition suggests that since the ends are insulated, the system
will conserve its energy and reach a stationary, constant solution in which
B equals the average energy of the initial condition, i.e.

™

B =< p(0,2) >p— - /W (0, ) da (2.93)
0

Nevertheless, we do not need to rely on physical intuition.

2.7.2 General solution

We use again the separation of variable method. The discussion leading to
eqs. (2.34,2.35) is independent on boundary conditions, so that we can start

from
oT(t)=CT(t) (2.94)
with solution
T(t) = Ae! (2.95)
and
92X (z) = CX(x) (2.96)

We consider again the 3 possible cases for the sign of C'

(I C>0
Since C is positive, we re-name it as C' = A\?, and solve for

I2X(x) = N2X (z) = X (x) = Ae™ + Be ™ (2.97)
We now have!?
0: X (x) =\ [Ze’\x - Ee_)‘m} (2.98)
9, X(0)=XA-B)=0=B=A (2.99)
and
9, X (1) = Z(W - e—m) =0 (2.100)

But this latter equation is satisfied only for A = 0, which would lead to
C =0, 1i.e., to a contradiction. There is thus no solution corresponding
to C > 0.

190bviously, for the conditions on 9, it is sufficient to analyse X.
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(I) ¢ =0
We have

2X(2)=0=0,X(x)=A= X(z)=Az + B (2.101)

From

. X(x)=A=0 (2.102)
we find, with the usual re-definition of constants, the solution
p(t,z) =Tt)X(z) = "B =B (2.103)
which is exactly the stationary solution of section 2.7.1.

(III) C <0
Since C' is negative, we re-name it as C' = —\?, and find

O2X (z) = —\2X(z) = X (2) = Asin(\z) + Bceos(Az)  (2.104)

From
0 X () = A(Acos(\z) — Bsin(Az)) (2.105)
we get,
0, X(0) = MA = X(z) = Bcos(\r) (2.106)
and
0, X (1) = =ABsin(Ar) =0 (2.107)

As before, to avoid a null solution, we have to ask A\ € Z so that
sin(Am) = 0. A = 0 corresponds to the C' = 0 case, while if A = —n < 0
we have (—n)? = (n?) and

X(x) = Bcos(—nx) = Bcos(nx) (2.108)

so that negative integers just produce the same solutions given by
positive ones. We may thus limit ourselves to

p(t,z) = Be "t cos(nx), nelN (2.109)

If two solutions p;, p2 satisfy the boundary condition 9;p(0) = 9zp(w) = 0,
also a linear combination of them will satisfy the same condition since

ax(Oép1 + /BPQ) = a0zp1 + BO0xp2 (2.110)

We may thus write the general solution as

o0 [e.9]
p(t,x) = Z Bpe ™t cos(nz) = By + Z Bpe "t cos(nz) (2.111)
n=0

n=1
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2.7 Flux boundary conditions

where on the rightmost expression we singled out the time independent
term corresponding to C' = 0. This term will obviously be the only one to
survive in the £ — 0 limit. As it happened for the case in which the ends
temperature was kept to 0, time decay is faster for high n, but now we have
also a t independent term.

This solution is, again according to the Fourier series theory, able to
approximate any regular initial condition in agreement with eqs. (2.61)

2.7.3 Computation of coefficients

We want again to be able to compute the coefficients B,, from the initial
condition pi—o(x). We use

cos(x—y)+cos(z+y) = 2 cos(x) cos(y) = cos(z) cos(y) = %{cos(w—y)—l—cos(w—l—y)}
(2.112)
and - ) ﬂ
/0 cos(kx)dx = z {sin(k‘x)}o =0 (2.113)

provided that k is a non zero integer, so that if m # n

/0 cos(na:)cos(ma:)dx:2/0 cos((n—m)x)da:—i—Q/O cos((n+m)x)dx =0
(2.114)

The formula above applies also to the case n = 0, cos(nz) = 1.
If n =m # 0 we have

T 1 (" 1 /7 1
/ cos?(nz)dz = / dx + / cos(2nz)dr = —(m+0) = T (2.115)
0 2/ 2 /s 2 2

while for n = m = 0 we have obviously
/ do=n (2.116)
0
Let us then define
co(z) = = cn(x) = fcos(nx) nelN (2.117)
0 - \/7?’ n - o .

so that we have

/07r cn(x)em(x) = dnm (2.118)

We re-write the general solution as

p(t,x) = ZBne_"ztcn(x) (2.119)
n=0
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Separation of variables in the heat equation

where (see eq. 2.80)
B, :/ cn () fr=0(x)dx (2.120)
0

If you prefer working with the dimensional variables, you may define

ck(a) = \/E L) = \/Ecos (%x/> (2.121)

and
0 ™ n2724¢
ot a') = [ / c£<w’>f<a:'>to] eI k() (2.122)
n=0 0
Let us explicitly compute
™1
By = —f_ do = < fi—o > 2.123
0= | Jmfola)de = VA < fio > (2123)
We thus have
. 1
tli{& p(t,x) = Bocy = VT < fimo >a ﬁ =< fi=0 >z (2.124)

confirming our physical intuition.

2.8 Diffusion on the circle

2.8.1 Periodic boundary conditions

—

Figure 2.2: Diffusion on the circle

Let us now imagine that, without changing the physical properties of
diffusion, we may bend the bar in a circle in such a way so that the two
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2.8 Diffusion on the circle

ends will be unified in a single point (Fig. 2.2). It is useful then to make a
change of variables, for this problem, from

2 €0,L] = x €[0,2n] (2.125)
namely
r =z’ o= 2n (2.126)
= ax’, =7 .

and the corresponding (see eq. 2.27)

t =~va?t = t 2.127
o

that leads to the usual
ip = d%p (2.128)

expression for the differential equation.

The reason for this change of variables should be clear: x (we could have
called it @) is the angle that gives the position on the circle. Now, since we
assume it to be purely 1D, the system is completely closed, since its ends
interact with each other, and are actually the same point. The boundary
conditions are now fixed in a natural way by asking the solution?® to be
periodic

p(t,z +2m) = p(t, ) (2.129)

These are the so called periodic boundary conditions.

2.8.2 Separation of variables

It is straightforward that if p; and po are periodic then
api(t,x +2m) + Bpa(t,x + 27) = api(t,x) + Bpa(t, x) (2.130)

so that we will be able to combine different solutions to the problem to
obtain new solutions. We proceed again with the separation method, that
leads as usual to

OT(t) = CT(t) (2.131)
with solution
T(t) = A'e”! (2.132)
and
92X (z) = CX(x) (2.133)

We consider again the 3 possible cases for the sign of C'

20 And by consequence all its derivatives.
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M C=X>0
The solution
X(x) = Ae* + Be ™ (2.134)

is not periodic, regardless of the values of the constants, so that C' > 0
will not satisfy the boundary conditions

(I1) ¢ =0
The solution
X(z)=Ar+B (2.135)
is periodic only for A = 0 so that we get the solution

p(t,z) =Tt)X(z) =e"B =B (2.136)

We may already understand (and soon prove) that this stationary
solution will be the lim; o of p, and its value will correspond to the
initial average energy/temperature/density>!.

(II) C =-X2<0
This time may proceed in a different (but equivalent) way. We know
that the general complex solution to

02X (z) = —\*X(z) (2.137)
is
X(x) = A'e™* 4 Blem @ (2.138)

This solution will be periodic if A =n € Z. To ask for the solution to
be real we may notice that the complex conjugate X* is

X*(x) = (A)*e™™ 4 (B')*em® (2.139)
so that the solution is real if
A= (BY =AY =B (2.140)
or
A= B" +iA", B = B"—iA" (2.141)
with A”, B” € R, so that

inx —inx inxr __ ,—inx o -
X(x) = 23”% + 22’A"% = Bcos(nx) + Asin(nz)
1

(2.142)

2IThe system is clearly conserving fp since it has no contact with the exterior world.
The boundary from which p could flow, that before corresponded to the two ends, has
now been reduced to no point.
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2.8 Diffusion on the circle

2.8.3 Complex “orthogonal” solutions

The periodic complex solutions
™ n e (2.143)

are extremely important and may shed some light also on the behaviour of
real solutions, as we will see soon. Being of a simple exponential form, they
are more easy to operate on than the trigonometric functions.

We start their study by computing the following integral??

2 21 2w
/ (eme)" e dy = / e~ M oy = / T (2.144)
0 0 0

In the n = m case we have

2
/ dr =27 (2.145)
0
while if n # m we use
2 1 . 2m
/ g=megy — = [eﬁ(”—m”f} = 0ifn,meZ (2.146)
0 i(n—m) 0
If we define
1 e
an(T) = e 2.147
@)= = (2.147
we have
2m
/ ay (x)am(x)de = dpm (2.148)
0
We may also define the following real functions for n € IN (p stands for
periodic)
1
P(z) = = 2.149
ja) = an(e) = (2.149)
h(x) = L(a (z) + a_n(z)) = = cos(nz) (2.150)
n - \/5 n -n — \/7—1_ .
P(x) = L(an(w) —a_n(z)) = = sin(n) (2.151)
V2i N

22We will later learn that this integral corresponds to a scalar product in a function
space.
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We have?3

27 21
| @@= [T awdma-

2
;/0 (an(z)am () + a—n(T)am () + an(x)a—m(2) + a—n(T)a—m(z))

1 1
= *(6n,m +0+0+ 6—n,—m) = 5(571,171 + 5n,m) = 5n,m

2 (2.152)
and similarly
2m 27
R AT
27
:% /0 (an(@)am (@) + a-n(@)am(@) = an(@)a—m(z) = a-n(@)a-m(@)) = Snm
(2.153)

2.8.4 General solution

If we were studying a problem in which p was a complex function, its general
solution would be written as

“+oo
pla,t) = > Ape " ay(x) (2.154)
with o
A= [ ap(@) fio(e)ds (2.155)
0

But since our initial condition is real, we have

27 2T
A= [ o@hco@is = [ at @ o) = A (2156)

so that
p(x,t) = Agap(x) + (Anan(z) + Aja_n(z)) =
=1

n

Apap(z) + Z (2 Re(4n)(an(z) + a—n(z)) + 2i Im(A,) (an(z) — a—n(2)))
n=1

(2.157)

By defining

Ag=Cy, C,=2vV2Re(4,), S,=2ivV2Im(A,) (2.158)

Z3These relations may obviously be shown to hold also through trigonometric equalities.
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2.8 Diffusion on the circle

we get the general solution in a-dimensional variables

p(t,z) = ij;)Cncﬁ(az)e"Qt + il SpsP (z)e "t (2.159)

with o o
Co= [ @@ Su= [ h@)hioola) (2.160)
N Co = \/% /0% fr—o(z) = V21 < fi—o > (2.161)
Cp = \/17? /0 7 cos(n) oo () (2.162)
S, = \/17? /0 7 gin(ne) fro () (2.163)

In the ¢ — oo limit we have
tliglo p(t,z) = chvV2m < fimo(z) >2=< fi=o(z) >4 (2.164)

These formulae that can be re-conducted to the dimensional case through
eqs. (2.126,2.127), namely defining

1 2 2 5 9
Are) =g A= [Feos () e = (%)

L L
C, = /0 L) fro(a!), S = /0 ) fooe) 166

’o . _an?r2yt! L.t G _an?nZyi! L.t
p(t',a') = Cne™ 17 k(@) +) Spe” 17 sh(a) (2.167)
n=0 n=1
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Chapter 3

The Schrodinger equation

We will discuss briefly how the method of separation of variables may be
used to solve simple problems in Quantum Mechanics, i.e. related to be-
haviours of particles at the atomic or sub-atomic level. The context for the
equation describing quantum behaviour will be provided using an historical
perspective, i.e. trying to describe how the leading physicists of the time
developed and understood these ideas at the beginning of the 20th century.
The discussion would be nevertheless extremely simplified and distorted to
fit in this short chapter, and should not be considered as a loyal description
of facts and opinions, but just as an invitation to the subject.

3.1 Historical remarks

3.1.1 Plank

In 1900, the great German physicist Max Planck proposed a solution to
one of the most important physical problem of the time, the law at which
a non-light reflecting body (“black body”) emits radiation when it is at
thermal equilibrium®. The details of the problem go beyond the purpose of
this course, but in order to find the correct law Planck had to do a very
revolutionary hypothesis: light (more properly, electromagnetic radiation),
which Maxwell theory had shown to be a continuous wave phenomenon,
had to be found in the body only under the form of discrete units (quanta).
Light with wave frequency v could be found only in “packets” with energy

E = hv (3.1)

LThis may be a good model of the energy emitted by a star as a function of the star’s
temperature.
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3.1 Historical remarks

where h is the Planck constant. We know that energy has the dimensionality
of mass multiplied by a squared velocity, while v is an inverse time, so that
h is an action, i.e. a quantity with dimension

[n] = [M][LPP[T]~ (3.2)

If we measure masses in kilograms, lengths in meters and time in seconds,
i.e. if energy is measured in Joules, the value of h is

h~6.63-1073J s (3.3)

Planck, who was a conservative man in life and science? introduced this law
not because he believed light to be formed by particles of energy hv, but
simply because the hypothesis allowed him to find the right solution. At the
time he proposed his law, it was still not understood that the hypothesis
was necessary to find the correct law, and that a continuous distribution
of energy would lead to non-sensical results (this was proven later by the
British Rayleigh and Jeans, and, independently, by Einstein).

3.1.2 Einstein
Photoelectric effect

As we have just seen, Albert Einstein had arrived to the conclusion that
Planck’s law was not just a mathematical trick, since he could prove that
if the radiation had a continuous energy distribution, the black body would
need an infinite energy before arriving at thermal equilibrium. Einstein had
also learned about experiments saying that the energy of electrons released
by a metal when electromagnetic radiation (light) was sent on it were inde-
pendent on the radiation intensity, a very surprising fact since the energy of
a wave is related to its intensity.

2Max Planck, who received the Nobel prize in 1918 for his work on the black body
radiation, strongly disliked Nazism but tried to convince German physicists to remain to
work in Germany under the regime. He never openly opposed Nazi policies, but tried (with
no success) to use his authority in order to defend some Jewish colleagues, talking once to
the same Hitler (these are Planck’ memories of their talk “In response to my comment that
it would essentially be a self-inflicted catastrophe if valuable Jews were forced to emigrate,
as we urgently need their scientific work, and that this will otherwise benefit primarily other
countries, he (Hitler) did not comment any further. He turned instead to general chitchat
and concluded by saying: People say that I occasionally suffer from neurasthenia. This is
slander. I have nerves of steel. He then slapped his knee hard, spoke at an increasingly
faster rate and worked himself up into such a rage that there was nothing else for me to
do but to remain silent and leave.”). Planck’s son Erwin was sentenced to death in 1944
for taking part to a plot aimed at killing Hitler.
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The Schrodinger equation

FEinstein thus stated that light was composed of particles of energy hv,
where v is the frequency of the wave. The intensity of the wave was related
to the number of particles in the wave. Nevertheless, when interacting with
individual electrons, it would be the energy of the particle (photon) to decide
if the electron received enough energy to leave the metal. The energy of the
released electron would be, according to Einstein’s prediction,

E=hv—¢ (3.4)

¢ being the minimum energy needed to release the electron from the metal.
Intensity, Einstein predicted, would be related to the number of released
electrons, not to their energy.

FEinstein wrote his theory in 1905, and his predictions were experimen-
tally confirmed in 1916. The theory was not easily accepted. Einstein did
not explain why light usually behaved like a wave, and not as a particle,
in other situations. The particle theory of light, proposed in the past by
Newton, had been rejected empirical data. For these reasons even the most
prominent physicists of the time considered Einstein’s theory as wrong, and
even when data supporting it emerged, most phycisits believed the quanti-
zation to be due to interaction with matter, and not intrinsic in light itself.
Only after the quantum theory for particles (as electrons) was developed,
and was understood that the particle-wave duality is universal in nature,
was it possible to better understand Einstein’s theory?.

3.1.3 Relativity

In the same year, Einstein proposed his relativity theory, which extends some
results previously introduced by the Dutch physicist Lorentz, and largely
parallels a theory introduced at the same time by the French mathematician
Poincaré*. In non relativistic physics, the energy of a particle in a potential
U is given by

1
E= §m1)2 +U(x) (3.5)
This is often written in physics as
P2
H =—+4+U 3.6
(x.B) = 2+ U(x) (36)

3The quantum theory of light , being inherently relativistic, presents more difficulties
than the quantum theory of electrons, and was developed only in a second time.

4The difference between their approaches is subtle and debated between historians.
Most nevertheless agree that Einstein was the first one to state clearly that the new
dynamics and kinematics derived just by asking that all laws of physics, including the
value of the velocity of light, were the same in all inertial frames.
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3.1 Historical remarks

where H is the Hamiltonian function of position x and momentum p, a
function that plays a fundamental role in the theoretical study of mechanics.
The momentum p is, for this simple system, defined as

p=mv (3.7)

so that Newton’s second law may be written as

dp;
= =05, H(x.p) = 05, U(x) = Fi(x) (3.8)
In relativistic physics we still have
dp;
— =F .
T = Fix) (39)
but now the momentum is given by
i (3.10)

P=——
e

where ¢ is the velocity of light (this causes the inertia of a particle to diverge
when the velocity approaches ¢, so that no force may bring a particle to a
velocity higher than ¢.) The energy of a free particle (i.e in absence of force)

E = /m2c* + p2c? (3.11)

is now defined by

which may be solved for

2
Jo L (3.12)
V2
=3
so that
p v
== 3.13
E 2 (3.13)
Let us now assume there is a particle without mass, m = 0. Eq. (3.11)
becomes
E =pc (3.14)
and substituting in (3.13) gives
v=c (3.15)

For this reason, the “light particles” that Einstein introduced in his work
on the photoelectric effect have necessarily zero mass (since they move with
velocity ¢ ®). The theory of Relativity was soon accepted by the leading
physicists of the time®.

°It is clear from eq. (3.11) that if m > 0 then E > pc.
In particular those of Einstein’s generation or younger. Others, while agreeing with
the mathematical results, maintained a different philosophical approach, closer to the one
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The Schrodinger equation

3.1.4 De Broglie

With is 1924 Ph. D. thesis, the French physicist Luis de Broglie made an
important step in understanding the relation between wave and particle
behaviour.

About waves

Let us first start with some notation. If we have a periodic phenomenon (in
our case the oscillation of a wave) with period T, its frequency is given by

1
== 3.16
v=r (3.16)
We often express periodic phenomena through trigonometric functions’,
f(t) = Acos(wt + ¢) = Acos(w(t+T) +¢) = f(t+T) (3.17)
This implies
wl' =21 = w =27V (3.18)
where w is called the angular velocity. Relation (3.1) may thus be written
as
E—hw, h=o' (3.19)
- 27 ’

where we have defined the useful constant & (h-bar).
If a wave has velocity ¢, it will cover a distance ¢TI’ in time 1. This
distance is called the wave length

=S (3.20)

v

Let us write a function which is periodic in space and time
O(t,z) = Acos(kx —wt + @) (3.21)

At a fixed point Z this function will be oscillating in time with a period T'
such that wT = 27, as discussed above. If observed at fixed ¢, the function

of Lorentz and Poincare. It is nevertheless interesting that less important physicists had an
harder time to accept relativity theory. The Nobel Prize committee received, in the years
following the publishing of Einstein’s Special and General (Gravitation) Relativity theory,
many endorsements to give the prize to Einstein, but the members of the committee were
reluctant to give the prize for relativity theory, and eventually decided to give him the prize
for the photoelectric effect in 1921. Interestingly, a few of the eminent physicists proposing
Einstein were actually doubtful with regards to the correctness of the revolutionary theory
according to which light is composed by particles!.
"cos(wt + @) = cos(¢) cos(wt) — sin(e) sin(wt) = C4 cos(wt) + Co sin(wt)
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3.1 Historical remarks

looks like oscillating with a period (distance between two crests) A such that
kA =27, or

_271'

A

where k is called the wave number. Is this the same A in equation (3.20)7

k (3.22)

We have mentioned above that the oscillation of a (1D) wave is described
by a differential equation in the form

DX0(t, ) = PO2D(t, x) (3.23)
If we substitute ® from eq. (3.21) in eq. (3.23) we obtain

WAO(t,x) = Ak*0(t, x) (3.24)
i.e. we have a solution provided that

2 c
w=tck = 2mv = :I:CT = A=- (3.25)
v
(we have assumed to define v and A as positive), so that A appearing in the
periodic solution is indeed the distance the wave covers in T'.

De Broglie’s matter waves
De Broglie noticed that for a photon, using eqgs. (3.14,3.20,3.22), we have

S L . (3.26)

b c A P

and made the hypothesis that a wave length \ was associated to any particle
of momentum p according to the law above.

De Broglie’s idea was very easy to test®: it was enough to have a beam
of electrons with momentum p through a crystal with lattice distance b and
see if the beam generated a diffraction pattern corresponding to a wave of
wavelenght . It did, and de Broglie (1929) and experimental physicists
Davisson and Thomson (1937, for two different experiments performed in
USA and Britain) got the Nobel prize.

3.1.5 Heisenberg

In 1925, the 23 year old German physicist Werner Heisenberg formulated the
first successful and completely consistent description of atomic phenomena,

8In principle, performing actual experiments nobody did before is never easy.
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through a quite obscure model called matriz mechanics. The model was per-
fectioned and mathematically brushed up in collaboration with Max Born?
and Pascual Jordan, two other German physicists, and used by the Austrian
Wolfang Pauli'® to find the the spectrum (possible energies of electrons) of
the Hydrogen atom.

Despite its early success, the model, who lead Heisenberg to the 1932
Nobel Prize!'!, was not extremely loved by contemporary physicists. Many
just disliked its mathematical formalism, but a few disliked the underlying
philosophy: Heisenberg claimed that there was nothing more in physics
that what could be directly observed, no underlying substrate, and based
his theory on this philosophical principle.

3.1.6 Schrodinger

Between those that did not like the philosophical principles underlying Heisen-
berg model there was Albert Einstein, who believed that the truth was in
the direction shown by de Broglie’s ideas. Through Einstein, the Austrian
mathematical physicist Erwin Schrodinger learned about de Broglie waves,
namely that a free (non interacting particle) could be described through
relations (3.1,3.26) by a periodic function

o

U(t,x) = (7= F) (3.27)
Here we used the complex formulation (whose real part gives a cosine and
imaginary part a sine), and generalised to the 3D case!'? the relations

E p

i =~ =k 2
2=, D (3.25)

91954 Nobel Prize for his interpretation of the statistical nature of Quantum Mechanics,
to be discussed later.

101945 Nobel Prize for his exclusion principle, that describes the impossibility of two
electrons to be in the same physical state.

"Heisenberg trajectory during the dark years of National Socialism may recall the
experience of the much older Planck. A proud and patriotic German, never thought of
leaving the country. He was nevertheless accused of being a “white Jew”, since he taught
Einstein’s theories in his university courses. Eventually, due to his scientific stature, he
was put in charge of theoretical work related to the development of the German Atom
bomb, a role that made him be partially ostracised from the scientific community at the
end of teh conflict, and ruined his relation with his mentor, the Danish Jew Niels Bohr.
Nevertheless, Heisenberg always stated that he worked only to develop civil nuclear power.
After being arrested by Allied forces, and detained in Britain with other fellow scientists,
he gave to his fellow inmates a lecture on the functioning of the Hiroshima bomb, showing,

according to some historians, that he actually did his best not to build a Nazi bomb.
12USiI’lg V26ik~x _ 7k2eik<x.
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He started lecturing about this idea, in opposition to Heisenberg formu-
lation, until someone commented that “a wave needs a wave equation”.
Schrodinger, who was at the time 38, an age at which in general theoretical
physicists have already produced their best works, decided to spend a few
days in a mountain cabin on the Alps with a woman that was not exactly
his wife'® and used (part of) his time to write down the wave equation that
takes is name. He started from the Hamiltonian function (3.6)

E=H(x,p) = 2]); + U(x) (3.29)

He noticed that, according to eq. (3.27), the energy is obtained by operating
on V¥ using the following differential operator E

EV = BV = ihd, ¥ (3.30)
In a equivalent way, the (x component of the) momentum is obtained by
PV = PV = —ih0, ¥ (3.31)

He thus replaced the quantities £ and p in eq. 3.29 with these differential
operators acting on W. In order to replace p?, he used

P’ =p-p=7p" =) (—ihd;)(—ihd;) = >V (3.32)

i
He was left with the potential U, that he decided to introduce as an operator
that multiplies ¥ by U, since, as we saw with eq. (2.55), such a choice gives

a linear operator.
He thus introduced the following equation that takes his name

9]
EU(t,x) = HU(t,x) = 2p—m\11(t,x) + U(x)U(t,x) (3.33)
or, explicitly
h2
ihoy U (t,x) = —%v%(t, x) + U(x)¥(t,x) (3.34)

Before discussing the meaning of this equation is better to find its solution,
just as Schrodinger did.

13In 1939, Schrodinger moved to Dublin, invited by the Irish Prime Minister (later
President) De Valera, when he had to leave Austria due to his positions against the Nazi
party (smart people had a tendency to dislike Nazism), where he openly lived with his
wife and the mother of one of his daughters. While in Dublin, he had other two daughters
from different women.
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The Schrodinger equation

3.2 A simple 1D problem in Quantum mechanics:
a trapped particle

Let us suppose we have a particle trapped in a area of length L. We will
assume, for reasons of mathematical simplicity, the problem to be 1D.

3.2.1 Boundary conditions

This trap is realised by asking that the particle moves freely (U = 0) in the
[0, L] area, but it cannot exit it. Namely we will study the equation in such
interval with the boundary conditions

U(t,0)=U(t,L) =0 (3.35)

Although we still did not discuss the meaning of W, we are implying that
¥ somehow tells us where the particle is, for example ¥ may be related to
the particle’s “density” (reality is more complex, see section 3.3). Since the
equation is second order in space, these conditions should be enough to fix
the behaviour of the solution. The equation is first order in time, so that
knowledge of

v(0,x), xe€]l0,L] (3.36)

should suffice.

3.2.2 Separation of variables: the Time-independent Schrodinger
equation

The equation is linear and the boundary conditions are homogeneous, so we
will proceed with separation of variables.

(t,z) = T(t)X () (3.37)
This leads to 2
X(z)(iho,T(t)) = T(t) (—QmagX(x)> (3.38)
and, dividing by ¥,
hoT(t) ., —E92X(x)
T C =2t 5 (3.39)

Let us reflect on the role of C. We introduced the operator

E = iho, (3.40)

1Schrodinger equation is basically a diffusion equation with a —i in front of the time
derivative.
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particle

because it gave the energy when applied to ¥ in the form of a de Broglie
wave, eq. (3.27). Here we have

EU(t,2) = ihd,T(t) X (z) = X (2)ihd,T(t) = CX (z)T(t) = CU(t, z)

(3.41)
it looks thus reasonable to name C' = FE, the energy of the particle.
We are thus left with two equations
iho T (t) = ET(t) (3.42)
and
h?
f%agxm = EX () (3.43)
The first equation is solved as
T(t) = Ale'n! (3.44)

This is obviously the time part of eq. (3.27), but now we obtained it from
a wave equation, so that Schrodinger’s critics could be silenced. It should
be clear that, provided the potential U is time-independent, the procedure
leading to eq. (3.44) will not depend on U. The time dependence of ¥ for
a particle with a given energy E will be always given by eq. (3.44). We will
thus be left with the problem of finding the space dependence of W, which
is given by the Time-independent Schrodinger equation, eq. (3.43).

We may notice, given the discussion above, that, when dealing with the
Schrodinger equation, the separation of variable process has a deep physical
meaning, since leads us to obtaining physical states with a defined energy.

3.2.3 Solution of the time-independent Schrodinger equation

The equation may be written as

92X () = — QZ;E X(x) (3.45)

We have as usual 3 cases depending on the sign of the energy

(I) E <0, 2 =)

The solution to

02X (z) = N2 X (z) (3.46)
is
X(x) = AeM + Be (3.47)
Clearly
X0)=0=B=-4 (3.48)
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and
X(L) = A(eM — e (3.49)

cannot be zero for A # 0, so that there is no solution for negative
energy.

This is not surprising. The energy for a classical particle is

1
E= 5112 +U(x) > U(x) (3.50)
so that by fixing the potential U = 0 we are (from a classical view
point) forcing the energy to be E > 0. We have just seen that this

result applies also to the quantum problem.

(II) E=0, 282 =0
The solution is
X(x)=Az+ B (3.51)

and as usual the boundary conditions impose A = B = 0. But if ¥
tells us where the particle is, ¥ = 0 means no particle at all'®.

While in the classical physics case we could have zero energy states,
corresponding to the particle standing still somewhere between 0 and
L, this is not possible in Quantum Mechanics. According to Heisen-
berg indeterminacy principle, it is impossible to know the position
and velocity of a particle at the same time, and thus it is impossible
for a particle to stand still somewhere!S.

(II) E >0, 285 = — )2

Since we are dealing with a equation that includes a complex term (4

in front of 0;) it is better to write the solution in complex form
X(z) = Ae™® + Be ™ (3.52)
Anyway, from X (0) =0 we get B=—A or
X(z) = A'sin(\x) (3.53)
To have X (L) = 0 we require AL = nm, n € IN or

nmw A2h2 n2n2h? n2h?
AN=—=F= = =
L 2m 2mlL2 SmL?

=n’E, (3.54)

15This statement will be justified in section 3.3.
6 Heisenberg’s name popped out as a result of Schrédinger’s theory... more on this later.
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where we defined
n2h?
~ 8mL>2

Classically, the particle’s energy could assume any value mwv?/2 > 0,

Ey (3.55)

but a quantum particle described by Schrodinger’s equation can only
assume discrete values of the energy, such as

Eo, 4E0, 9E0, 16E0, 25E0, etc. (356)

3.2.4 General solution
Eq. (3.53) may be written as (refer to eq. 2.84)
Al nj — L
X(z) = A’sin ( T x) Asy (x) (3.57)

so that a general solution may be written as

U(x,t) = Z Ane*"ETntsTLl(a:) (3.58)
n=0
with .
A, = / SL(2) (0, £)da (3.59)
0

Since the functions s,LL represent the solutions of the time independent equa-
tion corresponding to the energy E,, we will call them also ¢g, and write
the general solution as

U(a,t) = Ape g, (x) (3.60)
n=0

But, what does this mean?

3.3 The Philosophy of Quantum Mechanics

What Schrédinger actually did in the days spent on the Alps with (one of)
his mistress(es) was to compute the possible energy states of the hydrogen
atom. As we will see in a following chapter, also these states can assume
only discrete values'”. That energies of electrons in atoms assume discrete
values was well know by experiments. The Danish physicist Niels Bohr had
proposed in 1912 a model, that was based on some ad hoc assumptions fol-
lowing Planck quantum hypothesis, that constrained electrons to move only

From this discreteness comes the name quantum. Quantum is the Latin for how much,
and it is related to the English quantity.
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on some specific orbits, and could explain the energies of some atoms'®.

But now Schrédinger was able to derive the same results from a completely
consistent model, and had written an equation to derive the energy of an
electron in any physical problem, just by knowing the potential U. Fur-
thermore, he was able to derive Heisenberg’s theory from his own, showing,
he believed, that there was no need of such a theory with its philosophical
implications. For his work on Wave Mechanics'® he received the 1933 Nobel
prize.

But he still had to provide an interpretation for his wave function V.
The wave function is a complex function, and cannot be directly observed.
One can nevertheless define a real quantity from it

p(t,x) = U*(t,x)U(t,x) (3.61)

Other real quantities could obviously be defined, such as Re¥ and ImW.
Nevertheless, the quantity defined in eq. (3.61) satisfies a conservation law
similar to eq. (1.99), and thus leads to Schrédinger’s interpretation of it as
“a particle density”.

This interpretation soon showed to have a few conceptual problems?.
In 1926, Max Born suggested that p, if better defined as
U*(t,x)U(t,x)
U (t,x) WU (t, x)dx

p(t,x) = T (3.62)

so that its integral over all space V' is one, p gives the probability of finding a
particle in x. The quantum world is no more deterministic, as the classical
one, in which the initial state (position and velocity) determines all the evo-
lution of the system. Schroédinger equations are still deterministic regarding
the evolution of ¥, but when an experiment is performed, the result of the
experiment is probabilistic?!.

This framework is very general. The British physicist Paul Dirac, who
shared the 1933 Nobel Prize with Schrodinger, showed that both wave and
matrix mechanics may be derived from a more general formalism. Let us
consider for example a de Broglie wave, eq. (3.27). If we apply the operator
P to it, we obtain

U = pU (3.63)
But if we apply it to eq. (3.53) we get
. . . /nm . nm nm
p¥ = —ihd, sin (Tx> = —zhf cos (Tx> (3.64)

8Bohr won the 1922 Nobel Prize for this model.

19Quantum Mechanics using Schrédinger’s formalism.

20F.g., when used to describe more than a particle.

' The dimensionality of W is, in D dimensions, [¥] = [L]~?/2. Why?
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The operator p has no more the effect of multiplying ¥ by a number, so that
the physical state has no defined momentum. What will be the result of an
experiment? From eq. (3.49) we see that the sine is the sum of two terms
that have a specified momentum , each of them with a different sign. An
experiment that measures the momentum of the particle in a state of given
energy will give one of these two values, each one with probability 1/2. If
the experiment measures the position, it will give a value between 0 and
L with probability proportional to siHQ(%x). When we have the general
solution eq. (3.60), that includes many different energies, the probability of
an experiment to give a given energy is

AL A,
PE. = SR (3.65)

Macroscopic objects are composed of many particles, whose dynamics is
described by Quantum Mechanics. So Quantum Mechanics should be more
fundamental than Classical Mechanics, and should be applied to any object.
The reason we do not realise the weird quantum behaviour in our everyday
life is related to the small value of h. The minimum energy of a particle in
a trap is discrete,
n2h?
8mL2
If we use as mass the electron mass, of order 1073! Kg, and as L = 10710 m,

Ey= (3.66)

comparable to the size of an atom, we get Fy ~ 10~'7 J. This is a relevant
energy for an electron, that has an electrostatic energy of ~ 107 J when
in a field of 1 V. But if we consider a ball of 1 Kg moving in a trap of 1
m, we get Fy ~ 10797, which is basically zero from a macroscopic point of
view, so that the energy appears to be continuum.

The standard interpretation of Quantum Mechanics has been developed
by Niels Bohr’s group (including Heisenberg). It makes a distinction between
the mathematical structure of the wave equation, and the results of experi-
ments. Only the latter are observable, and questions about what happens to
the particle before the experiment result are meaningless. The predictions
of Quantum Mechanics are in perfect agreement with the experiments, that
are the only thing that may be tested.

This interpretation baffled Schrodinger (and Einstein). Also the experi-
mental equipment, and the experimenter themselves, are composed of parti-
cles. How can we make the distinction between Quantum and not Quantum?
Schrodinger came out with this example. A nucleus may be in different en-
ergy states. The passage between two different states (two 1) corresponds
to the emission of radiation. Observing the emission of radiation is an ex-
periment, and has a probabilistic outcome. Now, says Schrodinger, let us
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connect a mechanism to the emission of radiation, and let us have this mech-
anism kill a cat closed in a box with the atom and mechanism, in case the
atom decays. Our experimental result is the cat being dead or alive. Ac-
cording to Schrodinger, if Bohr’s interpretation is correct, we should have a
quantum function describing the whole system, and thus the cat being both
alive and dead, until we open the box?2.

The predictions of Quantum Mechanics are very reliable. So reliable that
in general for long time many physicists adopted a “compute and shut up”
approach, i.e. they ignored philosophical questions, leaving them to people
like Einstein, Schrédinger, Bohr and other Nobel prizes that did not need to
care too much about how they used their time since they already obtained so
much?3. Nevertheless, physicists have come to apply Quantum Mechanics
outside the realm of atoms and nuclei (for example, to study the whole
universe) so that questions such as “what happens before the experiment is
performed” became quite relevant. The philosophical debate is not over.

3.4 Getting rid of h

To get a clear idea of what our results imply, we worked using the original
variables ¢ and x with dimensions of time and length. Nevertheless, many
physicists, in particular theoretical physicists, like to work in a unit system in
which i = 1. This not only allows them to get rid of % in their expressions,
but introduces also a “natural” unit system, i.e. a system based not on
human conventions but on Nature’s rules®*.

Let us write the 1D Schrédinger equation

iho, U (t, %) = Z@g@(t,x) +Ux)U(t, ) (3.67)

22In his words, One can even set up quite ridiculous cases. A cat is penned up in a steel
chamber, along with the following device (which must be secured against direct interference
by the cat): in a Geiger counter, there is a tiny bit of radioactive substance, so small, that
perhaps in the course of the hour one of the atoms decays, but also, with equal probability,
perhaps none; if it happens, the counter tube discharges and through a relay releases a
hammer that shatters a small flask of hydrocyanic acid. If one has left this entire system
to itself for an hour, one would say that the cat still lives if meanwhile no atom has decayed.
The psi-function of the entire system would express this by having in it the living and dead
cat (pardon the expression) mized or smeared out in equal parts.

23 And in general, this approach went in favour of Bohr’s school of thinking that you
shouldn’t ask yourself what happens in the microscopic system.

24Gince it uses a universal constant as a unit measure. In an equivalent way, the velocity
of light ¢ is usually fixed to one (this accounts to measure distances in time, as for the
celebrated “light year”)
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and perform the change

t 1
t=— = —0Oy :
;=0 =0, (3.68)
;T 1
=—- =0, =0y 3.69
v= 5 (3.69)
The equation in the new variables becomes
1
0yt 2') = _%aﬁ,\p(t’, ')+ U2 U, ) (3.70)

i.e. we got rid of h. To better understand how this happened, let us re-
member (eq. 3.2) that A had the dimensionality of an action, i.e. energy
multiplied by time. Actions are extremely important in physics, since it may
be shown that a classical (i.e., not quantum) particle moves on a trajectory

that minimises?®

a quantity S, called indeed action, with the dimension of
energy multiplied by time.
If we define a quantity S’, given by an energy multiplied by time in the

new scaled coordinates, we have that

8] = [M][LPIT)2([T') = [M)[L'P[T)F = [M][LP[R) 2T ) = (SR~ = [+]°
(3.71)
This equation tells us two things

1. The new action is a-dimensional (the [¥]° term)
2. Its value is given in units of A (the [S][A]~! term)

Indeed our change of coordinates introduces a “natural” system in which
actions are counted as multiples of A.
By working in such a system, we would have found, for the energy of the

system
E! =n*E] (3.72)
with
/ i
0~ om.L/2 (373)

How can we regain from this expression the one including the A factors?
One way of doing it is to notice that

L== (3.74)

25 Actually extremises.
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The Schrodinger equation

and substitute. But in some situations, we may not have such a simple
expression. A more general approach is to write

7'('2 k

E p—
0~ 8mL2 f

(3.75)
and determine k£ by dimensional analysis
[M][L]P[T] 7% = [Eo] = [EIF[TIM[L) 2 (M)~ = [M]* L2 (T) 7 (3.76)

that implies k = 2.

3.5 The particle in a 3D box

Let us solve our first 3D problem, by asking our particle to be trapped inside
a 3D box. We have

U(x)=0for z € [0,L,] and y € [0,L,] and z € [0, L,] (3.77)
and

\Ij(tv 07 Y, Z) = \Ij(tv LCE: Y, Z) = \I’(ta 05 xZ, ?/) = \I’(ta xZ, Lya Z) — \I’(ta x,Y, 0) = \I’(ta xz,Y, LZ) — 0
(3.78)
Let us use the separation of variables technique by asking

Ut .y, 2) = T(OX (@)Y (4)2(2) (3.79)
so that the Schrodinger equation becomes

X(2)Y (y)Z(2)(ihd, T (1)) =

2
e (TOY ) Z()EX (@) + TOX @) ZERY () + T(OX (@)Y ()2 2(2))
(3.80)
we divide by ¥ and obtain as usual®®
iho,T(t) . R (0(X(x) 02V (y) 02Z(z)
0= (Ko et a) e

As we stated above, provided that U is time independent, the solution of
the time function is always

T(t) = Ale™int (3.82)

26Since the two sides of the equal are functions of unrelated variables.
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To solve the time independent equation that gives the physical state (wave
function) corresponding to the energy E we write

R _ (azxm N azyun) (3.83)

om Z(z)  2m \ X(z) Y(y)

Now, the two sides of the equality are functions of unrelated variables, and
they have to be constant. We name such constant E,,. We have

n? 027(z)
2m Z(2)

—E—E, =E. (3.84)

We already solved this equation in the 1D case. We get E, > 0,

h2
2 oz z
Ez = ’I/LZEIO7 EO = @ (385)
with n, € IN, and?”
Z(z) = sk (2) (3.86)
We proceed in the same way and get from
R? (02X (x) 02V (y)
E.,=—|-=2 N .
=2 (K + 70l 50
the equation
n? 9%Y (y) h? 92X ()
E,, +—-=% =FE,=—>= 3.88
vt 2m Y(y) 2m X(x) (3:88)
and, solving for X
h2
_ 2 T
E.’E = ano, EO = m (389)
with n, € IN,; and
X(z) = sk (x) (3.90)
Finally, from
h* 93Y (y)
- = =B, —E,= 3.91
™m Y(y) Yy Y ( )
we get
2y Y h?
Ey = nyEO, EO = @ (392)
with n, € IN, and
L
Y(y) = sny (y) (3.93)

2"We do not write the multiplicative constant. It is usual in Quantum mechanics to use
functions that have integral of their square modulus equal to 1, as our s functions are,
due to the probabilitic interpretation eq. (3.62).
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Clearly, from our definitions we have
E=E,+E,+ E.=nlEj + n’E} + n’Ej (3.94)
where the n are positive integers. For a cube, it simplifies to
E=n’Ey, n®>=n2+ nz +n? (3.95)

The general solution?® is

[ee) o) [ee} 2 px 2 Y 2z
Z Z Z _;nzBotnyEgnz By L

W(t7£U’ 3/7 Z) = Anmnyvnze ! h tsﬁ:f ("E)Sns (y)sﬁj (Z)
ng=1ny=1n,=1

with

L, Ly L, I I I
Anz,ny’nz :/ dm/ dy/ dz(lll(O,:L“,y,z)sn;f(x)sn;’(y)snzz(z))
0 0 0

28The process of obtaining a general solution from the products of particular solutions
in the different variables is described in more detail for the 2D membrane in 4.2.
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Chapter 4

Vibrating membrane

4.1 The wave equation

An important differential equation is the previously mentioned wave equa-
tion, that describes the propagation of light or the propagation of a signal
(“vibration”) in a medium?

DPD(t,x) = *V2D(t,x) (4.1)

4.1.1 A “deduction”

We now present an argument that should convince that eq. (4.1) correctly
describes the basic features of the propagation of a vibration or signal in
a medium, and that will help in understanding the basic features of wave
dynamics.

Let us consider the dynamical system of Fig. 4.1. Here we have n + 1
beads located at positions x =0, a,...,1a,...,na, connected by springs and
moving vertically on some frictionless poles. The vertical position of each
bead as a function of time is given by ®;(¢). Assuming all springs to have
elastic constant k, the beads to have mass m, and springs to have 0 rest
length, and recalling the Hooke law relating the recall force to the extension
of a spring
d%x(t)

dt?

m = —kx(t) (4.2)

! The wave equation has been developed initially to describe the propagation of a signal
or vibration, and this led 19th century physicists to think about light as the vibration of
some kind of medium, called aether. The position of modern physicists is basically the
opposite, since nowadays we believe electromagnetic forces to be more fundamental than
the vibration of any medium, being the cause of forces between atoms and molecules.

7



4.1 The wave equation

P,

12 S x

Y B

1
a

[N

Figure 4.1: A system of beads as a model for a vibrating string.

we may write

d?®;(t k
20 B (@)~ @ (0) + (@)~ i) (43)
t m
since the dynamics of ®;(¢) will depend on the displacement with respect to
its neighbours. We re-write it as

2H .
! 31@2(25) = % (Piv1(t) — 2@i(t) + P;-1(t)) (4.4)

Now, let us consider our system of beads and springs as the model for

a continuous string. We send the distance a — 0 and assume we may
measure the vertical displacement as a continuous function of z. Namely,
remembering that ®; corresponds to position ia we define

O,(t) = ®(t,ia) — P(t,x) (4.5)
Before sending a — 0, we re-write again our equation as

d?®(t,ia) k . . ,
2 (®(t, (i1 + 1)a) — 2®(t,ia) + (¢, (i — 1)a)) (4.6)
We now use a Taylor expansion for the term in parentheses
O(t, (i + 1)a) — 29(t,ia) + ®(t, (i — 1)a) =
2 2
O(t,ia) + ad,®(t, ia) + %agop(t, ia) — 20(t,ia) + ®(t,ia) — ady®(t,ia) + %agop(t, ia)

+ 0(a®) = a?02®(t,ia) + O(a®)
(4.7)

If we now assume that the following quantity has a finite limit for a — 0

(4.8)
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Vibrating membrane

we obtain performing the limit
OF(t, ) = cO?D(t, x) (4.9)

A simple dimensional analysis shows that the expression in eq. (4.8) is
indeed a squared velocity. From eq. (4.2) we have

[MIL)[T)2 = [K][L] = [k] = [M][T]~* (4.10)

and thus
[e] = [M[T]?[LP°[M] ™ = [L)[T]) 2 (4.11)

Physical meaning

It should be very easy to understand why the second derivative emerges on
the left side, by comparing the force acting on ®5 and @3 in Fig. 4.1. In &3
we have a high (negative) value of 9,®, but this results in a balance in the
force acting on the bead. On the other hand, in ®2 we have a change in the
derivative, and a resulting force on the bead. It is in the positions in which
the string is convex or concave (non zero second derivative) that we have a
strong recall function.

Our simple model should also show clearly the nature of the wave (signal,
vibration) propagation. We forced our beads not to move in the z direction,
but the interaction between beads causes a signal (the displacement ®) to
propagate in x and .

4.1.2 From string to membrane

It’s not hard to generalise to a 2D membrane?. We start again with a grid of
beads moving on frictionless poles. Now the vertical position of each bead
is ®; j(t). Each bead is connected to 4 other beads, its first neighbours in «
and y (Fig. 4.2).

Now we get

2&H. .
dq;;g@) __F { (@i, (t) = Pim1,5(1)) + (Dij(1) — Pig1,5(1))

m

(@i (1) = By (1) + (i (1) = iia (1)) |

m a? a?
(4.12)

_ ka? {‘I’iﬂ,j(t) = 2%i5(t) + Dim15(t) | Pijra(t) =293 (t) + iy (t)

2The proposed models are extremely simplified but they are very easy to handle and
describe the basic physics of the problem.
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Figure 4.2: A system of beads as a model for a vibrating membrane.

and, in the a — 0 limit
BFo(t,x,y) = & (70(t, 2, y) + 0 D(t,2,y)) (4.13)

4.1.3 Getting rid of ¢

The velocity of light is the same in any inertial frame. Since nature provided
us with such a universal constant, theoretical physicists like to measure
their distances in seconds. For example, they would say that 1 meter is the
distance that light travels in (3 - 10%)~! seconds.

Actually, you will never hear a theoretical physicists saying something
like that. They will state that they use a system in which ¢ = 1. Let us
see why. Measuring distances as we just stated is equal to make a change of
variables

T o0 0% 0" 1

,:— x(Pzi_ii:fx/(I)
v c:>8 ox ox' Ox ca

1 1 (4.14)
= 8§<I> = -0y <8x/<1>>
c c
so that in the new variables the wave equation becomes
Ot(t, ) = O2D(t,x) (4.15)

The dimensional terms including ¢ may be recovered at the end of compu-
tations with the same methods used for % in section 3.4.
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Vibrating membrane

Actually, in theoretical physics the change of variables
t' = ct, (4.16)

(leaving x unchanged) is preferred. You may check that this change of
variables removes ¢ from eq. (4.1).

4.2 Separation of variables in the vibrating mem-
brane problem

Let us suppose we have a vibrating membrane of size L., L,, with the
boundary conditions

®(t,0,y) = ®(t, Ly, y) = ®(t,2,0) = B(t,2,L,) =0 (4.17)

namely the membrane is clamped on the boundary.
We proceed as usual, due to the linearity of the equation and the homo-
geneous conditions,

Ot 3,y) = T()X ()Y (y) (4.18)
and obtain ,
2 (BX@) | BYW) %0
( X@ Y )K =T (19

Let us focus first on the left side, that we rewrite as

92X (z) K 8§Y(y)

= =K 4.20
X@ @ v 20
The last step is obtained as usual noticing that we have an equality between
functions of unrelated variables. We write also

8§Y(y) K

)~ @ K, =K, (4.21)

We should be familiar enough with these equations to write the conditions
for K, K,

n2n? nin?
K, =— Z?E , Ky:—izz , nx:”yE]N (4.22)
to which correspond the solutions
L
Xn, () = Ap, S,LL;” (x), AnyYny (y) = Sny (y) (4.23)




4.2 Separation of variables in the vibrating membrane problem

The product

N

Ly by L - Ly, Ly
14"’71114'77/34853c (x)sn (y) = Anzynysﬁg (x)sn'z (y) = nz,nysnz,ny (:’U y) (424)

2.2
K=-¢ (nig + ng; ) = —wfmny (4.25)
The time equation becomes
OFT(t) = —wp, o T(1) (4.26)
Its (real) solutions are in the form
Ty, (t) = Asin(wp, n,t) + B cos(wn, n,t) (4.27)
By multiplying with eq. (4.24), and re-defining
Anomy = AZp. i, Buom, = BBy, (4.28)

we obtain the particular solution

. Le,L Ly,L
Ay oy S (Wny i, ) Snaimg (2,Y) + Bnyony, €08(Wng nyt)Snaim, (T,y)  (4.29)

where we should remember that w is given by eq. (4.25). The general
solution is thus

Ly, L Ly, L
t Y y Z Z Anz My sin wnz nyt)SnT,nf,/ ($ y)—i—an,ny cos(wnz,nyt)smmj (1‘ y)

ng=1ny=1
(4.30)
We have

Ly, Ly
0 x y Z Z anvnysnzanyl('x y) (431)

ng=1ny=1
We will assume that this Fourier series may express any physical initial
condition ®¢(x,t). We notice that

La Ly La,Ly
/ dm/ d:z: snf:n;’ T y)smxm,my (x, y))

</0 she (:E)san”i(x)d:n) (/OLy sﬁ;(y)S#ﬁ(y)dy> (4.32)

— 5nx,mm 5ny,my
so that

Lo Ly
By, = / dx/ dy q)o (z t)sn;”’nj (x, y)) (4.33)
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These results tell us that the initial condition ®g(x,t) cannot completely
specify the solution, since it provides no information on the constants A;,, », -
Let us then compute

0Pt z,y) =

Ly, L . Ly, L
Z Z wnzyny |:Anzyny COS(wn17nyt)Snz7nyy (.T y) anyny Sln(wn17nyt)8nz7n5 (.’13 y)j|

ng=1ny=1

(4.34)

and

Ly, L
8t 0 iy y Z Z wnx,ny nz,nysnzvnj (x y) (4'35)

ng=1ny=1

If now if we know also the initial time derivative 9,®(0,xz,y) = Po(z,t) we
may obtain the constants Ay, ,, through

A

/Lf” dz /Ly dy ‘I>0(:c t)sn;”:n;‘ (z, y)) (4.36)

Ng,Ny —
Wnig,ny

and completely specify the solution of our problem.
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Chapter 5

Laplace equation

5.1 Introduction

When we consider the stationary, i.e. time independent, versions of the heat
or wave equation, we obtain the Laplace equation

Vi =0 (5.1)

5.1.1 Electrostatics

This equation is extremely important in many physical problems, and in
particular in electrostatics, i.e. in the study of electric fields produced by
non moving' charges.

One of Maxwell equations of Electromagnetism reads as
divE(t,x) = kg p(t,x) (5.2)

where E is the electric field, p the electric charge, and kg is a constant that
depends on the choice of the unit system.

Furthermore, for stationary electric and magnetic fields it is possible to
obtain the electric field from a potential?

E(x) = -V&(x) (5.3)

! Also charges moving at constant velocities can be described using electrostatics, but
they generate also a magnetic field.

2Maxwell equations relate magnetic and electric fields. Nevertheless, the the equa-
tions can be separated in equations for the electric field and equations for the magnetic
field under stationary conditions, since the terms that couple the two fields involve time
derivatives.
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so that, putting the two equations together, we get

kg p(x) = divE(x) = div (= V®(x)) = —V2®(x) = V2(x) = —kg p(x)
(5.4)
Equation (5.4) is called the Poisson equation, and relates the difference
between the average value of ® in a small volume centred in x to the amount
of charge in x (section 1.5.5)

P(x) — @(x) ox —p(x) (5.5)
In absence of charge (for example in vacuum) the Poisson equation turns
into the Laplace one, eq. (5.1).
A “deduction” from Coulomb’s law

The law for the force felt by a charge dq in presence of another charge ¢ is,
for static charges,

kg dqq
F =
drr2 "

Different unit systems use different definitions of kg. Theoreticians prefer

(5.6)

to define kg as a pure number (either 1 or 4 7) so that the dimensionality
of ¢ is given by

(M)[Z][T] 72 = [qP[L] 7 = [g] = [M]2[L]2 (1] ! (5.7)

while in practical applications a specific dimension for charge is introduced
and kg = 1/¢q is used.

We define the electric charge by considering dg small enough not to affect
the surrounding charges, and by dividing the force by dq so that

q

Let us compute the flux of E on a surface

/ E-ndS:/ divE dV (5.9)
Sy 1%

To compute the divergence it is useful to use eq. (1.74)

kg1, o1

diVE(Ta 97 90) = A 12 'r[r 2

]=0 (5.10)
This equation is computed using spherical coordinates and placing the origin
of the coordinate system on the particle’s position. Nevertheless, since we
defined the divergence in a geometrical way, the result is valid regardless
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of our choice of the coordinate system. As a result, the flux of the electric
field is zero through every surface that does not include the charged
particle.

The last remark is extremely important, since the spherical coordinate
system fails on the origin (zero Jacobian) which is exactly the place where
the field diverges, and thus the above computation does not apply there.
How can we deal with surfaces that include the charge?

It is very easy to compute the flux on a spherical surface centred on the
charge of radius R

T 27
1
/ E -ndS = qu/ d@/ dchQ—Q =kgq (5.11)
Sy 47 0 0 R

We may now compute the flux through any surface as the sum of the
fluxes through two surfaces: a spherical one centred on the charge, plus the
surface that limits a volume given by the original total volume minus the
ball delimited by the spherical surface. The sum of these two fluxes gives the
wanted results, since the terms on the spherical surface get opposite signs
(Fig. 5.1).

/ E-ndS:/E-ndS—i—/ E.(—e.)dS = E-ndS—i—/ E-ndS =
S—ball s ball S—ball ball

/E-nd5+/ E- (e)dS — E-(er)dS:/E-ndS
s ball ball s
(5.12)

We may conclude that the flux through a surface is kg ¢ if the surface in-
cludes the charge, and 0 if it does not.

An important principle of electrodynamics is that the field generated
by a system of charges is the sum of the fields generated by the
single charges. This, together with the linearity of integration, allows us
to write for a system of charges

/ E-ndS= Y kg (5.13)
Sy

q; inV

Let us now assume to have a continuous distribution of charges p(x), so that
> ai= [ pxjav (5.14)
\4

Using Gauss theorem we get

/divEdV: E-ndS= ) qui:/p(x)dV (5.15)
14 Sv Vv

q; in'V
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f

<

Figure 5.1: The flux through a surface as the sum of the flux on the ball
centred on the charge, plus the flux on the surface of the volume excluding
the ball. The red arrow shows the outgoing vector n = e, on the ball, while
the blue arrow shows the outgoing vector for the surface of the volume
excluding the ball, n = —e,.

Since this result is true regardless of the choice of the volume, we obtain®
divE = p(x) (5.16)

The relation
E=-Vo (5.17)

for a field in the form (5.6) may be verified by computing the gradient of

o(x) = FBd (5.18)

- Agrr

Substitution in eq. (1.42) gives the wanted result?.

5.1.2 Unicity of solution for the Lapace equation

Eq. (5.5) becomes
P(x) = B(x) (5.19)

30therwise, we could integrate on a small volume centred in an area in which the
equality does not hold.

4Electric fields and potentials for continuous charge distributions may be written by
first writing sums over charges and then passing to the integral, as shown in any elementary
or advance Electrodynamics text.
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in absence of charges, i.e. when Lapace’s equation holds. This clearly implies
that ® cannot assume a minimum or maximum in a charge free zone®.

Let assume that we want to solve the Laplace equation in a volume V,
and that we know the value of ® on the boundary of such region. Then the
solution is unique.

To show it, let us assume we have two solutions of the Laplace equation,

@, and P4, assuming the same value on the boundary. The function
D =P — Dy (5.20)
is then zero on the boundary, and satisfies Laplace’s equation
V20 = V(D) — ®y) = V2D, — V20y =0 (5.21)

As a result, ¢ cannot assume a maximum inside the volume. But since its
value is zero on the boundary, we necessarily have

d=0= P =Py (5.22)
and accordingly the solution is unique.
This argument can be used also for the Poisson equation, since the dif-
ference ® satisfies Laplace equation even in presence of charges,

V2 = V(01 — ®y) = V201 + V2®y = kpp — kpp =0 (5.23)

This result is extremely important in physics since it tells us that if we assign
a given potential to a set of conductors delimiting a given volume, the value
of the potential, and thus of the electric field, will be uniquely determined
in the whole volume®.

We may now proceed to study some solutions of the Laplace equation,
using again the separation of variables method.

5.2 2D Laplace equation in a rectangular area

According to the discussion above, providing the value of ® on the border
of a rectangle

®(0,y) = f(y)

®(Ly,y) = g(y) (5.24)
®(x,0) = h(x)

®(xz, Ly) = U(z)

°Tf, for example, ® assumed a maximum in xo, then there would be an area around
such point in which ®(x) < ®(x0) Vx, so that ®(x) < ®(x), leading to a contradiction.

5This is true also for a non-finite volume, provided that the behaviour at infinity is
given as a further boundary condition, as we will see in some examples.
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is given, the potential is uniquely determined inside the area.

This is clearly not a homogeneous boundary condition, but we will nev-
ertheless be able to solve it with the separation of variables, though the
definition of four sub-problems.

5.2.1 A simpler problem

Let us consider the following simpler problem, i.e. boundary conditions

(I)<Ovy) - f(y)

(5.25)
O(Ly,y) = ®(x,0) = ®(x,Ly) =0

The conditions are again not homogeneous at = 0, but this is not a
problem. As we could handle the initial condition at ¢ = 0 through a Fourier
series for the heat, wave and Schrodinger equations, we will be able to deal
with the x = 0 condition in the Laplace problem.

Let us write

O(z,y) = X(2)Y () (5.26)
The Laplace equation implies
02X () 02X ()
z =C =27 0.27
X(@) X() 20
We have
X(z)Y(0) = X(2)Y(Ly) =0 Vz=Y(0)=Y(L,) =0 (5.28)
from which we get, as usual
n?n? n?m?
—C=——- N=C= 0 5.29
L2’ nelN= L2 > (5.29)
to which corresponds the particular solution
Yaly) = Ansa” (y) (5.30)

Since C' is positive let us define C' = 2. We have, regarding the X equation
92X (z) = v*X (2) (5.31)
whose general solution is
X (x) = Asinhyz + Bcoshyzx (5.32)
We want X (z) to be zero in @ = L,. It is thus easier to define

¥=L,—z (5.33)
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so that
04X (2)) =X () (5.34)
and
X (") = Asinhya’ + Bcoshya' (5.35)
Now we ask
X(@' =0)=0=B=0 (5.36)
and obtain the solution
X (z") = Asinhvya'’ (5.37)
or
X (z) = Asinh(y[L, — z]) (5.38)

The general solution of the Laplace equation that assumes 0 in x = L,
=0, y = Ly is thus

> . nmw
O(e,y) = Y Ausinh(7[Lo —al)si”(y),  v=7-  (5.39)
n=1 4
from which we have
®(0,y) = Y Apsinh(yLa)s" (y) = f(y) (5.40)
n=1
and finally
1 Ly L
Ap=———— N E ) (5.41)

sinh(vL;) Jo

5.2.2 Solution to the full problem

We may use the procedure above to solve the following four problems

V2o =0, ®;(0,y) = f(y), @1(Lyy)=®(x,0)=;s(z,L,) =0

(5.42)
V20 =0, ®(Leyy)=9g(y), @11(0,y) =®s(x,0) = 1/(x, L) =0
(5.43)
V20, =0, ®rr(z,0)=h(z), @11(0,9) = Prr1(Leyy) = Prpr(z,Ly) =0
(5.44)
V20, =0, @v(z,Ly) =), @1v(0,y) =P (Lsy) = Prv(z,0)=0
(5.45)

After we found the four solutions, we have obtained the solution to our
problem in the form

=0, + P+ Prr+Prv (5.46)
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Indeed
V2 = V20, + V20 + V20 1 + V2 =0 (5.47)
and
®(0,y) = f(y) +0+0+0=f(y)
®(Ly,y) =0+ g(y) +0+0=yg(y) (5.48)
®(2,0) =0+ 0+ h(z) + 0= h(x) '
Q(x,Ly) =04+0+0+1(x) =I(z)

5.3 Laplace equation in polar coordinates

Let us assume we want to know the solution of the 2D Laplace inside a circle
of radius 7, given the boundary condition on the circle

o (7, 0) = h(0) (5.49)

The symmetry of the problem suggests obviously the use of polar coordi-
nates. We recall (eq. 1.82 at fixed z)

1 1
V20(r,0) = ;@(r&@(r, 0)) + r—283<1>(7“, 0)=0 (5.50)

We try to solve the problem again with the method of separation of variables
(it will be clear soon why it works) setting

O(r,0) = ©(0)R(r) (5.51)
We get
O(6) -0, (rd,R(r)) + RT(Q’" ) oze(8) =0 (5.52)
Dividing by ® we get
RO Rm) = @(;Wag@(e) (5.53)

The variable r still appears on the right, but if we multiply by 72 we get

T 1

—_— = = — 2
R0 Or(royR(r)) =C o) 0;0(0) (5.54)
The equation for © is easier and familiar
020(0) = —CO(9) (5.55)

When dealing with the angle 6, the boundary conditions are determined by
the need to have
O(0 4 2nm) = O(0) (5.56)
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We treated this problem in section 2.2. The particular solutions are
Oo(f) = Apch, C=0 (5.57)
and
0,(0) = A, (0) + B,sh(0), C =n? (5.58)
For each value of n, the radial equation becomes

70, (roy R (r)) = n® Ry () (5.59)

We guess a function in the form R, (r) = A'r®*. From

Opr® = ar®™!

ro.r® = ar®

5.60
O (ropr®) = o*ro=! (5.60)
O, (r0,7) = a*r®
we get
Aa?r® = A'n*r® (5.61)

so that we we have an identity for a = £n. We are dealing with a second
order differential equation in r, and for n # 0 we have found a solution
depending on two constants

R,(r)=Alr" + Blr " (5.62)
For n = 0 we found a single solution, Ry = Aj. Nevertheless, we have
rd, [ra,ﬂR(r)} ~0 (5.63)

so that a solution may be found also by asking that the term in square
parentheses is constant, so that

_ By
o

rd.R(r) = const = B, = 0, R(r) = R(r) = BjIlnr (5.64)

We thus obtain, by redefining the constants (e.g. A, = A, A, A, = A,BL,
etc.) the general solution for the problem as

(r,0) = (Ag+Aglnr)ch+> (Ancg(a)r”mncg(e)r—”wnsg(9)7«”+Bncg(e)r—n)
n=1

(5.65)
We obtain at 7

(7, 0) = (Aot A T) e+ Y (Anch(O)7"+Anch ()7 "+ Bush(0)7"+ Buch (6)7")
n=1

(5.66)
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We appear to have a problem, since the general expression for the function
h(6) giving the boundary condition at 7 is

h(0) = Aocd + i (Ancg(a) + ang(e)) (5.67)
n=1

so that the number of constants in eq. (5.66) doubles those of eq. (bcsingle).

This is due to the fact that when we specify the boundary condition
for a problem that is defined on an area extending to infinite distance (in
opposition to the limited area studied in section 5.2), we need to specify
also the behaviour at infinity. Namely, in studying the solution outside the

circle, we may ask the potential not to diverge when r — oo 7.
Since
lim Inr = oo, lim 7" = oo (5.68)
r—00 r—00
we have
Ag=A,=B,=0 (5.69)
The general solution outside the circle reads
B(r,0) = Ao + > (Ancg(e)r—" n Bncﬁ(e)r—n) (5.70)
n=1
with
o y TV (0)do - T 1(0)sE(0)do
Ag :/ h(H)CISdQ, Ap = ) (T)n ( ) ; Bn= : (’I”)i ( )
0

(5.71)
If you read carefully, you probably noticed that this is not the solution that
we were seeking, because we wanted to find a solution inside the circle! But
as we discussed before, the polar coordinate system fails at » = 0. This
means that the r = 0 point has to be treated in a special way, since if we
do not treat it carefully the solution would be ill defined in the origin.
To find a solution inside the circle, we ask the potential not to diverge
in the origin, and since

lim Inr = —oo0, lim r™" = oo (5.72)
r—0 7—00
we have
Ag=A4,=B,=0 (5.73)

"This is not the only possible condition. For example, a term growing like 7 in the
potential can express a field that behaves as constant at infinity. Although a real physical
field will never have this property, such a boundary condition may be useful in solving
specific problems (e.g., when the field is constant at distances large when compared to the
scale at which we study the problem).
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The general solution inside the circle reads

O(r,0) = Agc? + i (Ancg(e)r" + Bncg(e)r") (5.74)
n=1
with
2T h(0)ch(0)do T h(9)sh(0)d6

0
) Bn:

B

2
Ay = / h(0)chdd, A, = =
0
(5.75)
A general solution reads as eq. (5.70) for r > 7, and eq. (5.70) for r < 7.
Continuity at 7 is obtained by construction, since both solutions are equal

to h(0) on the boundary.
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Chapter 6

A short introduction to
function spaces and Dirac
formalism

6.1 Introduction

We have often written the general solution of our partial differential equation
as

O(t,x) = Apfa(t)sn(x) (6.1)
n=1

where the time dependent functions f,(¢) are uniquely determined by n.
The knowledge of the particular solution implies knowing the A,,, that we
obtain from the initial condition ®(0,z) = g(x) as

A, = /g(:z:)sn(ac) dx (6.2)

through
/sm(az)sn(:c) dx = 0pm (6.3)

This procedure should recall us of another mathematical problem. Let
us assume we have a symmetric n by n matrix', A, such that this matrix
admits an orthonormal set of eigenvalues vy, which is a basis for the vector

LA more general class of matrix, normal matrices, would still have the same properties.
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space, i.e. vectors such that

AV)\Z. = )\iV/\i

VY = 0i

(6.4)
n
a= Zaiv)\i VaecR"
i=1
A very straightforward way of computing A a is thus
n n n
Aa= AZ a;vy, = Z aAvy, = Z QA V), (6.5)
i=1 i=1 i=1
In order to know the coefficients «;, we compute
n n
V)\]. a = ZO&Z‘V)\Z. . V)\]. = Zai&,j = Oy (66)
i=1 i=1

The formal analogy should be clear. Both procedures use indeed the prop-
erties of vector spaces provided with a scalar product, the main difference
being, as it will be clear soon, that in one case the vector space has finite
dimension, while in the other case it has infinite dimension. Since this math-
ematical structure is extremely powerful, we will study its basic principles
in this chapter, learning in the process an extremely useful formalism due
to the British physicist and Nobel Prize Paul Dirac?.

6.2 Vector spaces

6.2.1 Basic geometry and physics

Vectors are usually introduced in basic physics trough a graphic representa-
tion as arrows connecting two points in 3D space. They have magnitude and
direction, may be summed through the parallelogram rule, and multiplied
by a number, that scales their magnitude without changing their direction if
positive, while scales the magnitude and reverses the orientation if negative.

2Whose many contributions include the development of a formalism from which Heisen-
berg’s and Schrodinger’s theories may be derived, an equation to describe the dynamics
of a relativistic electron, the theoretical prediction of anti-matter, the statistical theory
of many electrons (independently developed also by the Italian Fermi), the seminal works
in the fields of Quantum Field Theory and Path Integral formulation of Quantum Me-
chanics, and the introduction of the Dirac delta function, based on previous works by
Furier and Heaviside, an ill-defined mathematical concept that will be later formalised
into distribution theory. A popular book about Dirac’s life is entitled “The strangest

man”.
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A short introduction to function spaces and Dirac formalism

A scalar product is introduced as an operation that gives a number from
two vectors

a-b=abcosf (6.7)

a and b being the magnitudes of the vectors and 6 the angle between them.
Once we choose a Cartesian reference frame, the vector may represented
by its 3 components

X = (SU,Z/, Z) = (xlaxZaIZ%) (68)
vector sum by
X +y = (21+y1, 22+ Y2, T3 + y3) (6.9)
product by a scalar by
ax = (axy, are, Ax3) (6.10)
and scalar product by
Xy = T1Y1 + Tay2 + T3Y3 (6.11)

6.2.2 Generalisation
Rn

We may easily generalise these concepts to the n dimensional case

X = (T1,...,%n) (6.12)
(xX+y)i =z +yi (6.13)
(ax); = aw; (6.14)

X y= Z Ty (6.15)
i

Abstract vector space

But we can do better. Let us call a vector space V' a set provided with the
operations of sum and a product by a scalar, such that if x,y € V and « is
a number, then

x+y=z €V, ax=w eV (6.16)

We basically call vector space a set on which we may define a sum and
product by a number is such a way that the result still belongs to the set.
This is clearly related to the studies we have been performing up to now.
Consider for example the set of periodic functions,

f(0+2nm) = f(0) (6.17)
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If we define the sum of two functions f and g as the function that assumes
in 6 the value

(f +9)(0) = f(6) + 9(0) (6.18)

and as the product of f with the number « the function that assumes in 6
the value

(af)(0) = af(0) (6.19)

we may trivially verify that the resulting functions are still members of
the set. Other examples of interest are functions that assume zero value
on boundaries, functions that have zero derivative on the boundaries, and

solutions of linear differential equations?.

Complex numbers

Until now we have been talking of a product with “a number” «. This vague
concept was used to hint that o € R. * But we may actually be interested
to generalise to o € C. °

The main reason for using complex numbers is the Fundamental theo-
rem of algebra, that states that any polynomial of degree n > 0 with com-
plex coefficients has at least a complex root (and actually, if counted with
multiplicity, exactly n roots). Namely, when we are dealing with complex
polynomial equations, we may always find a solution, and actually all the
solutions we need. Two examples will help us in understanding better this
issue.

Let us consider the second order differential equation

&*f _ df
—~ =a—+b 6.20
dz? ~ Yda +of (6:20)
If we guess a solution in the form e** we get
(A2 —aX —b)eM =0 (6.21)

A solution is then found by solving the algebraic equation
M —a\—b=0 (6.22)

The equation above does not necessarily have real solutions, while it has
exactly two complex solutions, providing the correct number of integration

3Examples of sets that are not vector spaces are functions assuming non zero value on
boundaries, or solutions of non-linear differential equations.

“In such a case we say that V is a vector space on the real field.

5In such a case we say that V is a vector space on the complex field.
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constants for a second order equation. For example, the most important
version of this equation is probably the harmonic oscillator one, a = 0,
b = —1, whose solutions are complex, A\ = +i. By working with complex

numbers we may obtain the solutions
et (6.23)

and from their linear combination the real solutions sin z and cos x.

The reader should be already familiar with the concept of eigenvectors
and eigenvalues of a matrix (that will be reviewed soon and related to the
problem of solving differential equations). Let us consider the simple matrix

(rotation of m/2)
0 1
() o

To find its eigenvalues, we compute
det(A—X)=X>4+1=0 (6.25)

There is no real solution, as understandable since no real vector is left un-
changed by such a rotation. Nevertheless, as we have seen above (eq. 6.4),
it is useful to operate on eigenvectors of the matrix, so it is important to
know that to the complex eigenvalues +i correspond the eigenvectors

V; = < :Z[ > V_; = < _(ja > (626)

6.2.3 The scalar or inner product

A scalar or inner product on a Vector space is an operator that takes two
vectors and gives a complex number

(x,y)eC (6.27)
withe the following properties

1. Complex conjugation under exchange:
x,y) =y, x))" (6.28)
2. Positive definiteness:

(x,x) >0, (x,x)=0if x=0 (6.29)
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3. Linearity:
(x,ay) = a(x,y), (x,y +2z) = (x,y) + (x,2) (6.30)

The definition eq. (6.15) satisfies the above conditions when applied to real
vectors, but needs to be modified to

X-y =Y iy (6.31)
%

to satisfy them in the complex case. One may wonder then why we asked
the scalar product to satisfy eq. (6.28) in the first place. First of all, such a
property automatically assures

(x,x) € R (6.32)
Furthermore, coupled with linearity, we have

(ax,y) = ({y,ax))" = (@ (y,x))" = " ({y,x))" = " {x,¥) (6.33)

so that

(ax,ax) = a*a (x,x) = |af? (x,x) (6.34)

so that the required property eq. (6.28) allows us to define a positive definite
scalar product. Indeed, for the specific definition eq. (6.31) we have

x-x:2|xi\220 (6.35)

A positive definite scalar product allows us to use the scalar product to
define a norm
%] = v {x,x) (6.36)

6.2.4 Linear independence, bases, dimension and the like
Linear independence

We say that a set of vectors of n vectors v; € V' is linearly independent if

> evi=0=c¢;=0Vi (6.37)

7

(or, equivalently, if it is impossible to write one of them as a combination of

some of the others).
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Basis and dimension

Linear combinations of these vectors forms a subspace of V, i.e. a vector
space V! C V. If V/ =V, i.e. if any vector in V may be written as a linear
combination of the v;, we say that the vectors for a basis of the vector space,
and that the dimension of the vector space is n. It may indeed be shown
that if the vector space has basis of size n, all its bases will necessarily have
the same sizeS.

Obviously, not all vector spaces admit a basis of dimension n. If they
do, we say that the space is finite dimensional. Finite dimension spaces are

“ecasier” and we will focus on them for a while.

6.2.5 Orthonormalisation

If a (non-zero) vector vy is given, it is trivial to obtain a normalised vector

from it, i.e.
1
e = ——vV; (6.38)
(Vi,v1)
so that .
(el,el> = <V1,V1> =1 (6.39)
(vi,v1)

Let us now consider a second vector vy, and assume v; and vo to be linearly
independent. We now compute

vh=vy — (e, va)e; #0 (6.40)

The result is necessarily non-zero, otherwise it would mean that vo may be
written as a linear combination of vi. We may now compute

(e1,vh) = (e1,va) — (e1,v2) (e1,e1) = (e, va) — (e1,vz) =0 (6.41)

We may now define
1 /
v
/

_— 6.42
(vh, v5) ( :

€y =

so that
(el,el) = <e2,e2> = 1, <e1,e2> =0 (643)

5The logic behind the proof is the following. Assume you have a basis x; of size n,
and a basis y; of size m > n. You can write y1 as a combination of the x;, and use
the obtained formula to express one of the x;, let us call it x; (a re-ordering may be
necessary), as a combination of y1, x;, ¢ > 1. This set of n vectors is thus a basis, that
we use to express y2. By repeating the process, you finally obtain that the first n y; are
a basis, in contradiction with the hypothesis.
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If now a third vector vs, forming a linearly independent set with v; and v,
is given, we define

vi = vy — (e, v3)e; — (es, v3)ex # 0 (6.44)

This vector is again non-zero, since e; and e, are linear combinations of vy
and vo, and thus if we had a zero we could write

V3 = <e1,V3> e; — <62,V3> €y = C1V] + Ccavy (645)
in contradiction with the hypothesis. Now we have

<e1,vg> = <e1,V3) — <e1,V3> <e1,e1> — <62,V3> <e1,e2> =

(6.46)
(e1,vs) —(e1,v3) —0=10
and
(e2,v3) = (e2,v3) — (e1,v3) (ea,e1) — (€2, v3) (eg,€2) =0 (6.47)
By defining
L (6.48)
€3 = ———V .
NRVITAIN
we get
(ei,ej) = 5i,j7 i,j = 1, 2, 3 (649)
The generalisation
k—1
Vi =V — Z (e, vi)e; #0 (6.50)
i=1
1 /
e = —————V}, (6.51)
(Vi Vi)
leads clearly to the construction of a orthonormal basis
<e,~, ej> = 52'73' (652)

starting from any given basis.

6.2.6 Scalar product and orthonormal bases

Given vectors x, y in a finite dimensional vector space V', we have, as shown

X = Z xT;€;, y = Z Y;€; (653)

above,
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where the x; and y; are the coefficients that give the vectors as linear com-
bination of the vectors in the basis (the components in that basis), and the
basis has been chosen to be orthonormal with respect to the scalar product
of the vector space.

We then have

o= (T o) 2o (e ) T (Semer)

j 7
Zyj (Z z; <ei7ej>> = Zyj <Z 96?51'4‘) = Zf";yﬂ‘
’ : ] (6.54)

We thus see that once we assign a orthonormal basis to a vector space of
dimension n, we may establish (eq. 6.53) a one-to-one correspondence with
the space C", that preserves (eq. 6.54) the form of the scalar product eq.
(6.31).

We may also show that if we have, in a space of dimension n, n or-
thonormal vectors, they are independent, and thus a base. Indeed, if we
assume

ei =) cje; (6.55)
J#

we get the contradiction that all ¢; are zero

0= (ek,ei> = ch <ek, ej> = Ck (6.56)
j#i
6.3 Linear operators

6.3.1 Definition

Let us consider an linear operator A from V to V, i.e. and operator such
that, if x, v are in V' then we have

Ax=z¢cV (6.57)
A(ax) = aAx (6.58)
Alx+y)=Ax+ Ay (6.59)
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6.3.2 Linear operators on a finite dimensional space

Let us consider a finite dimensional space with orthonormal basis e;. When
a linear operator A acts on a member of the basis e;, it produces a vector
in V, that may again be written as a linear combination of the members of
the basis

n
Ael- =Z = Z Zj€; (660)
7=1

Now, since the z; are determined by A and e; we may call them Aj;. Let us
now have A to act on a generic vector x

Ax = A (Z xiei> = Za:iAei = sz Z Ajiej = Z (Z Aj,ﬂ’i) €;
i i i j j i
=Z = Z zjej
J

(6.61)

The action of the linear operator is thus to take a vector with components z;

and to generate a vector with components ) . A;;x;. We have thus created

a correspondence between linear operators and matrices acting on R".
What is exactly A;;7 We can see it easily by computing

(ej, Ae;) = <ejaZAk,iek> = Agilejer) = Apidie = Ay
k k K

(6.62)
What happens when a linear operator acts on the result of another linear
operator?

Bax=B(Ax) = B 3] (Z AN’””%’) )= ;B <<Z AW) ej) )

J

Ko\ J
(6.63)

J J

The components of the new vector are given by Zj >k BijAjix; so that
also the rule of matrix product is obtained for operators on general vector
spaces. This means that

(e, BAe;) = Z (ey, Be;j) (e, Ae;) (6.64)

a formula that will result trivial once we introduce the Dirac formalism.
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A short introduction to function spaces and Dirac formalism

6.3.3 Eigenvalues and eigenvectors

In general, the action of a linear operator on a vector is more complex than
a simple multiplication by a complex number

Ax # ax (6.65)

and indeed an operator for which the above equation would hold for all x
would be just a multiple of the identity operator 1.

Nevertheless, for each operator A, there may be some eigenvalues A and
etgenvectors vy such that

AV)\ = )\V)\ (666)

The knowledge of such eigenvalues and eigenvectors is extremely important,
as already discussed above (eq. 6.6). In order to explicitly compute the
eigenvalues and eigenvectors, the matrix representation of linear operators
is extremely valuable. Let us first rewrite eq. (6.66) as

(A= AL)vy=0 (6.67)
Using an explicit basis, we get

D (A= AL)ij(va); =0 (6.68)

J
From the theory of linear equations, we know that this is possible only if

det(A — )\]l)@j == det(Aiyj - )\(SiJ) =0 (669)

The above equation is a polynomial of order n in A, and its solution gives
(since we are working with complex numbers) n roots A;, (possibly some of
them being equal, i.e. of multiplicity larger than one). The solution of the
linear equations
D Ak (va); = Xi(vVak (6.70)
J
will provide the explicit form of the eigenvector vy,. Obviously, the solu-
tion of eq. (6.70) is not unique. We know this both from the theory of
linear equations (since det(A — A\;1) = 0) and from general theory of linear
operators
Av = v = A(av) = aAv = Aav) (6.71)

so that if v is an eigenvector, also av is an eigenvector with the same
eigenvalue.
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6.3.4 Inverse operator

Let us consider an operator A such that each y in V may be written as
y = Ax (6.72)

We define the operator A~! as the operator

AlA=1= A1y =x (6.73)
We may easy verify that
AAT =1 (6.74)
Indeed
AAT'y = AATN(Ax) = A(A7'Ax) = Ax =y (6.75)

In matrix representation we have

8ij = (ei, lej) = <el, 1AeJ ZA Ak,g (6.76)

6.3.5 Adjoint operator
Definition

Given the linear operator A, we define its adjoint AT by asking

(x, Ay) = <ATx,y>, Vx,y (6.77)

Let us first notice that, once we assign an orthonormal basis e; we have

(x, Ay) = Zm (ei, Ay) = fo <ei,ZZAj7kykej>
—ZZZ&C Ay (i, e5) ZZZJE A]kyk5,j—zzx Aj kYk

(6.78)
and
() = () = (St X0 1)
(6.79)

so that, since the relation has to be true for each x and y, the adjoint
operator’s matrix representation is given by the the complex conjugate of
the transpose
*
(4l;) = A5 = Al = (A0 (6.80)
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We may easily verify that
(AB)" = BT Al (6.81)
Indeed
(x, ABy) = <ATX, By> = <BTATx,y> (6.82)
Self adjoint operators

We say that an operator is self-adjoint if, for any x, y, the following holds
(x, Ay) = (4x,y) (6.83)

Namely the operator is self-adjoint if we can move it on the other side of
the scalar product without changing it.

According to the theory developed above, a linear operator on a finite
dimensional vector space is self-adjoint if its matrix representation satisfies

A= (Ajr)" (6.84)

Eigenvalues and eigenvectors of a self-adjoint operator

Self-adjoint operators (symmetric operators in the real case) have properties
that make them extremely important. First of all, their eigenvalues A such
that

AV)\ = )\V)\ (6.85)

are real, A € R. Indeed
AV, v) = (v, \v) = (v, Av) = <ATV,V> = (Av,v) = (A\v,v) =
A (v, v) = A=)\

(6.86)

Furthermore, two eigenvalues corresponding two different eigenvectors of a
self-adjoint operator are orthogonal. Indeed if

AV)\1 = A1V)\1, /1V)\2 = )\2V)\2, Al 75 )\2 (687)
we have, using A = AT and A = \*,

A (Vs Vag) = (AVia, Vi) = (Vi AV ) = A2 (Va,, V)

(6.88)
= ()‘1 - )‘2) <V)\1,V>\2> = <V)\17V>\2> =0

This is not enough to assure that A has n orthogonal eigenvectors, since
the multiplicity of some eigenvalues may be higher than one (the sub-space
corresponding to some eigenvalue A is more than one.). Nevertheless, it is
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6.3 Linear operators

possible to show that a self-adjoint A has an orthonormal basis of eigenvec-
tors.

We can show it using the principle of induction. For n = 1 it is clear
that any operator (simply the multiplication by a number) has any vector as
an eigenvector, and such vector may be normalised and be, by itself, a basis
for the vector space. Let us assume that on any space of dimension n — 1
a self-adjoint operator A admits an orthonormal basis. For a n dimensional
space, we start by finding an eigenvector v, since we may always do that,
as shown above, due to the fundamental theorem of algebra. Let us call the
corresponding eigenvalue A;. This vector may be normalised as

1
e =——u v, (6.89)

(vi,v1)

We may always now find n — 1 vectors v;, ¢ > 1 that form a basis together
with e;. We may orthonormalise them in the basis {e;,€;}. The linear
combinations of the €; form obviously a subspace of vectors orthogonal to
e;. The important point, in which the fact that A is self-adjoint is crucial,
is that the action of A on vectors in the subspace, stays in the subspace,
since A€; is orthogonal to e

(Aej,er) = (e, Aer) = A1 (€,e1) =0 (6.90)

Now we can use the induction hypothesis, and find n — 1 orthonormal eigen-
vectors on the n — 1 space orthogonal to e, that we may call e; and that,
being in a subspace orthogonal to e, form with it an orthonormal basis.

Symmetric real matrices
Aij = Ay (6.91)

are clearly self-adjoint and thus admit a orthonormal basis of eigenvectures
with real eigenvalues.

Anti-adjoint operator
It is interesting to check what happens to an anti-adjoint operator

Al =—A (6.92)
Their eigenvalues A such that

Avy = v, (6.93)
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are purely imaginary. Indeed

V,V) = (V,AV) = (V, AV) = TVV:—VV:—VV:
MoV = o dv) = (v A = (Alvv) = CAvv) = (v =
A" (v,v) = A==\

Furthermore, two eigenvalues corresponding two different eigenvectors are
orthogonal. Indeed if

Av)\l = Alv)\p AV)\Q = >\2V)\2u A1 ?é )\2 (695)
we have, using AT = —A and \* = =),

A1 <V)\17V)\2> = <_)‘1V/\17v)\2> <_AV)\17V>\2> = <V)\1,AV)\2> = A2 <V/\17v)\2>
= (A1 = A2) (v, V) = (Via, Vi) =0
(6.96)

To show that these operators admit a basis of orthonormal eiegnvectors, we
just need to repeat the proof above using this time

<Aéi,e1> = <éz'7 —Ael) = -\ <éi,e1) =0 (6.97)

Purely imaginary symmetric matrices are anti-adjoint, so that they share
these properties.

6.3.6 Commuting operators

In general, linear operators on a vector space do not commute. Let us
consider for example a n = 2 space with an orthonormal basis e, es. Let
us consider the operator A such that

Ae1 = €9, Aeg =0 (6.98)

whose matrix representation is

00
A:(l o) (6.99)

361 = 0, Beg = e (6.100)

and the operator B such that

whose matrix representation is

01
B= ( - ) (6.101)
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6.3 Linear operators

Both by considering their action on the basis, or by matrix multiplication,

00 10
AB = BA = 102

namely AB leaves e in itself and deletes es, while BA has the opposite
effect.
We may define the commutator

we have

[A,B] = AB— BA = —[B, 4] (6.103)

and we will have in general [A, B] # 0. We will study later the properties of
the commutator, when we will study the solution of the Laplace equation in
spherical coordinates and its relation to Quantum Mechanics. In the mean-
while, we study some properties of self-adjoint and anti-adjoint commuting
operators, i.e. such that

[A,B] =0 (6.104)

Let us assume A and B admit a orthonormal basis of eigenvectors, as for
example self-adjoint and anti-adjoint operators (or, more in general, normal
operators, as we will show later) do, and that they commute AB = BA. If
v) is an eigenvector of A with eigenvalue A\, we have

A(Bv)) = ABv) = BAv) = A(Bv)) (6.105)

This equation tells us that Bv) is an eigenvector of A, with eigenvalue A,
i.e. the subspace generated by the linear combinations of all the eigenvectors
corresponding to the eigenvalue A is left invariant by the action of B. Since
B is self-adjoint (or anti-adjoint), we may diagonalise it on the subspace,
i.e. find an orthonormal basis of eigenvectors of B in the subspace. Each
of these eigenvectors will be at the same time an eigenvector of A (with
eigenvalue A, since it is a vector of the subspace) and of B. We may do that
for all the eigenvalues A\; of A and obtain a common basis of eigenvectors of
A and B. These vectors form a orthonormal basis

CNivjs Ae)\iﬁj = Aie)\iﬂj’ Be)\z‘ﬁj = YieXirv;

(6.106)
<eA'L’7'Yj ? e)‘kﬂ/l> - 517k5.]7l

Since in general to the eigenvalues of a (self-adjoint) operator may corre-
spond a subspace with dimension larger than one, although it is possible to
find a orthonormal basis of eigenvalues corresponding to it, it is not possible
to identify in a unique way all the vector of the basis through the eigenvalue.
By using enough commuting operators, it is possible to identify all vectors
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in the basis through a set of eigenvalues corresponding to each operator, a
process which is extremely useful in Quantum Mechanics (as we will see in
our analysis of the Hydrogen atom).

6.3.7 Normal operators

The most general class of operators that admits an orthonormal basis of
eigenvectors is that of normal operators

[A, AT] =0 (6.107)

To prove it, we first see that any operator A may be written as the sum of
a self-adjoint and anti-adjoint operator

1
A:ASA+AAA:5[(A+AT)+(A—AT)] (6.108)
since
1 1
(Asa)l = S(A+ AN = S (AT + 4) = Asy (6.109)
and
1 1
(Aaa)t = S(A— ANT = (AT — 4) = — A4 (6.110)

Now, if A is normal, we have

1 1
AsaAan = Z(AZ — (AT)? — AAT 4 ATA) = 1(142 —(AN?)

= (A (AT ATA 4 A4 = A4

(6.111)

Since Aga and Aa4 admit an orthonormal basis of eigenvalues (one being
self-adjoint, and the other one being anti-adjoint), and commute, they admit
a common orthonormal basis of eigenvalues

exys  AsAen .y = Aienyy,  Aaaen .y = Vi€

(6.112)
<e)\i:7j’e)\k7'yl> = 04,k0j,1
so that these vectors are an orthonormal basis of eigenvalues of A
Aey, .y, = (Asa+ Ana)en,y; = (A +75)ex, (6.113)

Since the A\ are real, and the v are imaginary, in general the eigenvalues of

a normal operator are complex.
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6.3.8 Unitary operator

An important class of normal operators are the Unitary operators U such
that
Ul'=Uu'=UlU=0U"=1 (6.114)

The have the property that
(x.y) = (x,UTUy) = (Ux,Uy) (6.115)

namely U conserves the scalar product.
By being normal, U assumes a basis of eigenvectors. Its eigenvalues A
are such that

(V,\,V)\> = <UV)\, UV)\> = <)\V)\,)\V)\> = )\*)\ <V)\,V)\> (6.116)

So that |A| =1, or A = €%.
Let us consider an orthonormal basis e;, and a unitary operator U. If
we define
éi = Uei (6.117)

we see that the €; are a new orthonormal basis
(€i,8;) = (ej,ej) =i (6.118)

On the other end, let us assume we know two different orthonormal bases,
e; and u;. For example, the u; may be eigenvectors of A, a normal operator.
Each u is obviously possible to write as a combination of the e;

u; = Zui,jej (6119)
J

The operator whose matrix representation is w;; is, by construction the
operator that generates u; when acting on e;. We may show that this
operator is unitary. Indeed, calling U the operator, we have

OUYi; = U0y =D wipuly = (i, u5) =6y (6.120)
! k:

It is also trivial to show that, if as stated above the u; are the eigenvectors
of the normal operator A, UTAU is diagonal in the original basis

UTAU),; ; = {e;,UTAUe; ) = (Ue;, AUe;) =
(Ut AU);; = i) =1 ) 6100
(w;, Auj) = (u;, Ajuy) = Aj (Wi, u5) = \jdi 5
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6.4 Dirac notation

6.4.1 Bras, kets, and scalar products

After this quick revision of (finite dimensional) vector spaces, we are ready
to learn Dirac’s notation and how it simplifies computations.
We defined the scalar product as an operator that takes two vectors and
gives a number
(%, %) = C (6.122)

where the x represent slots that may be filled with any vector.
We may also decide to fill the first slot with a vector,

(v,x) = C (6.123)

and obtain an operator that associates to each vector * a complex number.
We will have an operator for each v. Dirac notation is based on providing a
different name and symbol for the vectors and for their version as operators
that give numbers when applied on vectors, and to express all mathematical
expressions in vector spaces through a combination of such symbols’.
Let us denote the vectors in the space through a symbol called ket, i.e.
the vector v is represented by
|v) (6.124)

The corresponding operator (v, ) is represented through a symbol named

bra®

(v] (6.125)

The scalar product between x and y, (x,y) is a braket
(aly) (6.126)
We may write the product of a ket by a complex number « egivalently as®
alv) = |av) (6.127)

The linear combination of two kets may be written as

alv) + Blu) = |av) + |fu) = |av + Pu) (6.128)

7 Although in eq. (6.123) we defined the operator through the scalar product, in Dirac’s
notations such operators are more fundamental than the scalar product and define it.

8 At a dinner with other acdemics in Cambridge that were discussing about who between
them introduced new words in the English language, Dirac told them that he invented
the word “bra”. He never explained to the unbelieving colleagues that he did not refer to
lingerie.

9We will use Greek letters for complex numbers and Latin letters for bras and kets.
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Bras are obviously linear
(z[(afv) + Blu)) = alz|v) + Blz|u) (6.129)
The bra corresponding to |au) is

(o] = o™ (ul (6.130)

6.4.2 Ketbras, projectors and representations of unity
Ketbra

What happens if we write a ketbra?
[v) {ul (6.131)

Is it a meaningful symbol? It is, and it represents an linear operator on the
vector space. Let us apply it on a ket (vector)

() (D)) = o) ((ulz)) = ((ulz))[v) (6.132)

The braket (u|x) is just a number, so we moved it on the front, just to show
that the effect of the operator is to produce a ket (vector) parallel to |v) but
multiplied by the scalar (u|x).

Since a ketbra is an operator, we may wonder how to write its adjoint.
We may show that if A = |z)(y| then

(l2) )t = ly) (] (6.133)

Indeed (see eq. 6.144 above for the Dirac operator notation)

((oly) (o))" = (ule) (ylo) = (ul dv) = (ATulo) = ((v]ATw))”

(6.134)
= (v]y) (zlu) = (v]ATu)

projector

A very important case is when |v) is normalised, and we consider the pro-
jector
|v) (v (6.135)

that projects a vector along |v), i.e.

[} (v]u) = ({v|u))[v) (6.136)
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It is easier to understand its meaning by taking |v) corresponding to e;, and
u=> uje; (6.137)
J

so that the action of the projector is
(ilu) = (e;,u)e; = u;e; (6.138)

If we consider a few orthonormal vectors (not necessarily a basis for the
whole space) |i) (representing €;), then

Z i) (i (6.139)

is a projector on the the subspace generated by the linear combinations
of the e; (by being the sum of the projectors corresponding to each basis
vector).

Representations of identity

If we take the sum over all the basis, we get a projector on the whole space,
which is just the identity!

n
D iyl =1 (6.140)
i=1
To see it in explicit terms let us remember

u = Z u;€e;, U; = (ei, ll> (6141)
%

Written in bra-ket notation, the latter reads

ju) =) (ilu)li) = (Z |i>(i\> |u) (6.142)

(2

This is true for each |u), provided that the |i) are a basis, so that eq. (6.140)
follows.

6.4.3 Operators
General notation

The action of operator A on ket |v) is

|Av) = Alv) (6.143)
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while the scalar product (x, Ay) may be written as
(z[Ay) = (x[Aly) (6.144)

the latter notation being more used. The Dirac notation is asymmetric in
its treatment on operators on the two sides of the scalar product, since we
have for (Ax,y) only

(Azly) (6.145)

This asymmetry may be the only unpleasant feature of the notation. I like
to write

(Azly) = (z|Ally) (6.146)
but it is only a personal notation.
The matrix representation of A in the |i) basis is clearly given by

Aij = (ilAl7) (6.147)

We are now ready to see how the Dirac formalism make some computa-
tions trivial. The matrix representation of BA is

(i| BA|3) (6.148)

We may insert an identity operator where ever we want and easily obtain
eq. (6.64)

(i BLA|j) = IB\Z!k (k|Alj) = (i|Bk) (k|Al3) ZBZkAk,J
k
(6.149)

It is a useful exercise to rewrite all the equations above using the new for-
malism, for example

Al = Gl AT5) = (Al = (GIAID)* = (455" (6.150)

Normal operators

A normal operator admits an orthonormal basis of eigenvectors. We may
enumerate them ¢ = 1,...,n, and call the eigenvalues \; (we may have
degeneracy, \; = A; for i # j). Then the normal operator may be written
as

A= Aliyl (6.151)
i
Indeed, in the basis of its eiegnvectors, the matrix representation is

”_ZAk (i|k) (k|) ZAkamdk]_m” (6.152)
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or, in an equivalent way
Aliy = > X101 = D Al)d5 = Aili) (6.153)
J J

When defined on a basis, A is uniquely defined on the whole space, so that
eq. (6.151) gives the wanted operator.

Unitary operators

A unitary operator brings an orthonormal basis |i) in another orthonormal

basis |i'), so that it is by construction

U= Z ') (i (6.154)

where the prime in 7’ shows a change in the vector, not in the indexes, i.e.

we may write

(i'lj"y = i (6.155)
and

Uli) = S I8)il) = 31965 = 1) (6.150)

as wanted. We have

= Z i) (i'| (6.157)

and

Uty = Z\j)(j’\ Z i) (i| = ZZ 1)1 il = ZZ‘U

!—ZI

(6.158)
The matrix representation of U is

Uij = Y _(ilk')(klj) Zékj (ilk'y = (il") (6.159)

k

The matrix representation of an operator A in the basis |i’) is

Ay = (Al = D@ k) RIA (") = U AraUsy (6.160)
k.l

119



6.5 Function spaces

6.5 Function spaces

6.5.1 Introduction

We have seen that the concept of vector space may be applied also to func-
tions, as for example by defining a vector space of periodic functions, or a
vector space of solutions of a differential equations. Furthermore, a differ-
ential operators, as for example d;, 02, or V2, are linear operators on such
vector spaces, since

V(af(x) + Bg(x)) = aV?f(x) + fV7g(x) (6.161)

It is thus clear that we are interested in developing the theory of these func-
tional vector spaces as part of our theory of partial differential equations.
Nevertheless, as hinted by the fact that our general solutions in the form of
Fourier series included in general infinite terms, these spaces are not finite
dimensional. The theory of functional analysis, dealing with these vector
spaces, is not trivial and goes beyond the limits of this course. Nevertheless,
we may learn the basic tools and methods of the theory, that we will de-
velop, without proofs, using Dirac’s notation and in analogy with the finite
dimensional case.

If f(x) is a function in our vector space, for example a periodic function
between 0 and L, we may denote the corresponding ket as |f). We may
formally define the sum and product by a complex number, and we identify

laf + Bg) (6.162)

as the function

af(z) + Bg(x) (6.163)

We may also formally define the bra

(fl (6.164)

and ask it to satisfy the formal properties that define

(flg) (6.165)

as a scalar product. But it is clear that if we want out theory to be of any
practical value, we need to find a way to express this braket in a explicit
way.
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6.5.2 Continuum limit

Let us first deal with some partial information. We may compute the value
of the function in i = 1,...,n points,

A L
fi=f(@), @i= —756 +idz,  Az=- (6.166)

This is just a n dimensional vector, so that we may treat it with the usual
methods

fi = f(xi) = (@il f) (6.167)
(zi|zs) = dij (6.168)

> lziail =1 (6.169)

and

(flg) = (flei)lailg) = (f(2:)" g(xs) (6.170)

(2 (2
This description works at fixed n, but for finite n we may have only an
approximate information, and eventually we want to perform the continuum
limit, n — oo and Az — 0. But if we perform the limit with this naive
approach, we soon meet a problem.

Let us consider a constant function f(x) = C. We have

(flf) =nC (6.171)

a result that would diverge as n — oco. Let us then define
> iz Az =1 (6.172)

so that the scalar product is

(Flg) =D (flwa)(wilg)Ax =" (f ()" glwi)Aw (6.173)

7 A

Now the scalar product of the constant function is
L
(f1.h) :nCAx:nCE:CL (6.174)

a n independent result. We may now easily see that a candidate for the
eigen-kets |z;) are functions

# s .
5i(x) = 4 Var for x € [(1 — 1)Az,iAx) (6.175)
0 elsewhere
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We finally send n to infinity. The kets z) now represent an infinitely
narrow and high function, a Dirac delta function'®. The representation of
the identity is

L
/0 |z)(z|dz =1 (6.176)
so that
(zly) = 0(z —y) (6.177)
f(z) = (z|f) (6.178)
and

L L
(flg) = /0 (fl) (z]g)dz = /0 ()" g(x)de (6.179)

The scalar product between f and g becomes thus an integral of the product
of the complex conjugate of f and g.

What is the meaning of the Dirac delta function? It may be defined by
the following expression

L L
f(@) = (alf) = /0 (ely) | F)dy = /0 S —w)f)dy  (6.180)

When we integrate the product of a function f(y) and the delta function
0(x —y), the result is the value of f in = (if x € [0, L]). We will study these
functions in deeper later.

6.5.3 Adjoint operator

An adjoint operator is defined by

(f,Ag) = <A*f,g> (6.181)

for finite or infinite dimension spaces.
Let us consider the operator D = % on the space of periodic functions.
We have

.00 = [ ey (o) ar= [ L ersmars [ (<o) s

L *
= [(f(x))*g(x)]} +/0 <—dif(aj)> g(x)de = DI = _di D

(6.182)

where we performed an integration by part and used the fact that the func-
tions are periodic to delete the total derivative term.

10 A5 stated above, this is an ill defined function, but a formal definition may be provided
as part of the theory of distributions.
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We may now consider the operator P = —i%, again on the space of
periodic functions. We have

(f,Pg) = /OL(f(fv))* <—idig(n:)> dr =

i [ eyaenan [ (L@ ) s (618

L *
=t [(f(x))*g(x)]OL —i—/o (—z(Zf(a:)) g(z)dz = PT =P

The ¢ in front of the operator changes sign with conjugation, and allows
the operator to be self adjoint. In both cases, the operator’s adjoint had
a simple form because we had the correct boundary conditions, that thus
have a very important role in infinite dimensional vector spaces.
Since

d2

73 = D*=—-P?= (D*)! = D'D' = (-)?D? (6.184)
the second derivative operator is self-adjoint. This has an important effect
on the possible eigenvalues of the operator V2.

6.5.4 Enumerable basis

We have seen that the operator P = —i% is self-adjoint. In the finite dimen-
sional case, a self-adjoint operator has a orthonormal basis of eigenvectors
with real eigenvalues. You can easily check that in the proof regarding the
eigenvalue being real we did not use the fact that the space was finite or
not, so that a self-adjoint operator always has real eigenvalues'!.

What is an eigenvalue of a linear operator like P? It is the solution of
the differential equation

Pla) = a|a) (6.185)

We already know that a solution is given by the a ket such that
1 i2Tn g
(x|n) = Te T (6.186)

nez (6.187)

the eigenvalue being

1Tn quantum mechanics, these eigenvalues play the role of the values assumed by phys-
ical observables, and for this reason only self-adjoint operators may be used to build phys-
ical observables. This is the reason the momentum operator in Schrédinger’s equation
includes the ¢ term.
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We have already shown that

1 [t —j2mm j2mn
L/ e "L dx = (m|n) = mp (6.188)
0

This is an enumerable basis for the functional vector space, since each func-
tion that is smooth enough may be written as

= In)(nlf) (6.189)

The coefficients of the Fourier expansion are the

f) = (nlf) = \/>/ Hr (6.190)

The Dirac notations helps us in derive, remember and manipulate these
relations. We may, for example, remember that the functions

stz (@)sul (1)1 (2) = (@9, 2Ing, ny,n2) (6.191)

are the eigenkets of the the operator V2 with zero boundary conditions (the
quantum particle in the box). As a result

o e e o0
> 2 Z My Ty Mz) (Mg Ty, M| = 1 (6.192)

ng=1lny=1n

so that

- Z Z Z |nw’ny7n2><nx7ny7nz‘f> (6.193)

ng=1ny=1n,=1

You may compare this to egs. (3.96,3.97).
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Chapter 7

Laplace equation in spherical
coordinates

7.1 Introduction

We now study a very important problem in mathematical physics: the
Laplace equation in spherical coordinates. Recalling eq. (1.83), we have

1
r2sin 6

Op(sin 00y ®(r, 0, p)) + #824)(73 0,0)=0

1 2
T—zar(r 0r®(r,0,0))+ g%
(7.1)

7.2 Axial symmetry

Let us first study a simpler problem, by considering a function that does
not depend on ¢

b =P(r,0) (7.2)
so that the equation becomes
1 9 1 .
ﬁar(r or®(r,0)) + 2 Sin969(81n 00p®(r,0)) =0 (7.3)

The boundary condition may be the value assumed on a sphere of radius 7

O(7,0) = f(0) (7.4)
We play our usual trick
® = R(r)O(0) (7.5)
and get
O(6) 50, (PO, R() = ~R(r) - 0y(sin600(0)) (7.
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multiply by 72/® and get

1 9 o 1 )
R(T)ﬁr(r OrR(r))=C = 8(0)smd Sineag(smG@g@(G)) (7.7)
7.2.1 Radial equation
Let us first study the radial equation
0r(r?0,R(r)) = CR(r) (7.8)

As we did in the polar coordinate case (section 5.3), we try a power function

R(r) = rl (7.9)
as solution. We have
Oprt = 11
1"2(8,4’[) = [ptt! (7.10)

O, (r2(0,1)) = 11 + 1)
This means that 7' is a solution of eq. (7.8) provided that
l(l+1)=C (7.11)

7.2.2 Angular equation

The angular equation is then

19%@m9%ew»:-uk+n@w) (7.12)

S1n

The equation is simplified if we define

u = cosd (7.13)
from which we get
u? = cos’f = sinf =1 — cos’ 0 = 1 — u? (7.14)
and o oud
2= 9000 O0p = —sin 0, (7.15)

The equation in u becomes

89(8111 0(—sind)0,0(u)) = —I(l +1)O(u)

:ﬁé%@ﬂmm@«u—m@@w»:—w+n@w) (716
= 0, [(w? ~ 1)0.0(w)] = —1(l + 1)O(u)
= 0, [( — 1)2,0(u))] = 11+ 1)0(w)
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Let us try again a power function

O(u) = u"
so that
dyu” = nu" !
(u? — 1)9u" = nu" T — nu"! = nu" o
Ou [(u2 —1)9,0(u))] =n(n+ 1)u" —n(n— 1)u""
and thus

n(n+ Du™ —n(n — Du 2 =11+ 1)u"”

_1]

2

(7.17)

(7.18)

(7.19)

Different powers of u are found on the left and right side. This means that

a single power function of u will not satisfy the equation. Nevertheless, we

may still try to use a power series, hoping that if we correctly choose the

coeflicients the series will satisfy the equation. We try then

o
= E apu”
n=0

so that

ZannnJrlu fZannnfl Zan (l+1Du

:>Zanu [[(14+1) —n(n+1)] —i—Zannn—l)
n=0

since
nn—1)=0 forn=0,1

we may write the last equation as
Zanu l+1)—nn+1 —|—Zannn—1

or, using
n=n-2=n=n"+2

D anui(l+1) —n(n+ D]+ Y apia(n’ +2)(n' + Hu” =0
n=0 n’=0
:>Zanu [1(1+1)—n(n+1)] Zan+2u [(n+2)(n+1)]

n=0

2=0

=0

= Zo u (a1 + 1) = 0+ 1)] + angal(n +2)(n +1)]) = 0

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)
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7.2 Axial symmetry

satisfied if
ap[ll+1) —nn+ D]+ apt2l(n+2)(n+1)]=0 ¥n (7.26)

. 1+1) —n(n+1)

(n+2)(n+1)

Eq. (7.27) is a recursion equation that gives the value of the coefficient a, 2

(pio = —ap (7.27)

once the a,, is given. Namely, if ap and a; are provided, we have the whole
series.
7.2.3 Legendre polynomials

We also notice that, for high enough n we have
nin+1)

Ny A 7.28

e ) [ ) R (7.28)

so that for 8 = 0, u = 1, the series diverges

o0
Z ap — 00 (7.29)
n=0

How can we avoid this problem? If we have, for some 7
l(l + 1) = ﬁ(ﬁ—i— 1) = apgy2 = 0= apqor =0 (7.30)

then we may get all the even (if n is even) or odd (if n is odd) coefficients
larger than n to be zero. The n are positive integers, and thus to satisfy eq.
(7.30) we need | € Z. Namely

W+ =a@+1)=C-7)+(1-m)=0=(1+n)(I-7)+1-71=0
=(l-n)(l+n+1)=0=l=norl=-n-1
(7.31)

So that for each n we will have 2 possible [ value, one [ > 0, and one [ < 0.
IfI(l+1) =n(n+1) is odd, we may not use eq. (7.30) to set any a,, = 0
for even n, and thus we will choose ay = 0. On the other hand, for even
[(l+1) =n(n+ 1) we choose a; = 0. We call these solutions the Legendre
polynomials, Pj(u).
For example, Py is characterised by having

(l+1)=n(n+1)=0=n=0,1=0 orl=-1 (7.32)
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Laplace equation in spherical coordinates

Py (as all the P,) is determined only by the value of 7, so that we will not
talk about P, for negative [. We assign a given ag and set a; = 0, and we
get all the other a,, = 0, so that

Py(u) = ap = const (7.33)

For P, we assign ap, set ag = 0, and get all the other coefficients as zero, so
that

Py(u) = aju (7.34)

For P, we assign ag, set a; = 0 and get all the other coefficients as zero,
with the exclusion of

_ i+ n-0_
az = —a0=—prviy— 3 (7.35)
so that
Py(u) = ag(1 — 3u?) (7.36)

etc. These polynomials are usually defined so that P(1) = 1, namely

1
_32_ 1 (7.37)

Py(u) =1 Pi(u)=u Py (u) 5 5

This choice does not normalise the function P, in the sense of the previous
chapter

@) =1 (7.38)

Indeed, since u = cos(f) varies in [—1, 1], we have, for example

/1 (Po(u))*Py(u)du = /1 du =2 (7.39)

-1 -1

We have anyway

1 1
/ (Po(w))* Py (u)du oc/ udu =0 (7.40)

-1 -1

1 1
/ (Po(u))* P (u)du o / (u — 3u3)du = 0 (7.41)

-1 -1
1

/1 (Po(w))* Pa(u)du o / (1—3u)du=2—3 [ﬁ 1_1 —9_3 <1 + ;) _0

-1 -1

regardless of the choice of the normalisation constant.
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7.2 Axial symmetry

This is not by chance. As we will show in the next chapter, the Pj(u)
are solutions of the eigenvalue problem

LPw=I1(1+1)Pk  L=0,((u*-1)d,) (7.43)

for the self-adjoint operator L, and thus they are necessarily orthogonal (eq.
6.87). To make them orthonormal, we may just compute the normalised
polynomials P,

1 1
/ (Po(w) Po(w)du = [ du=2= Byu) =~  (7.40)
-1 -1 2
1 1
/_ (Pu() Pa(wd = /_ R ; = Pi(u) = gu (7.45)

! ! 2 u® ! 8
/ (1—3u2)2du=/ (1—6u2+9u4)du=2—6+9[} _°
-1 -1 3 5], 5

= Py(u) = \/g(l — 3u?)

etc., so to obtain

(7.46)

1
| Pty Potwdu = o (7.47)

The P, can be defined (and usually are defined) to be real, so that we may
drop the complex conjugation. Changing variables back to 6, the orthogo-
nality relation becomes

/ Py(cos 0) Py (cos 0) sin 6 d = &, (7.48)
0

By being eigenvectors of a self-adjoint operator, a combination (series) of
these polynomials may represent each regular function in [—1,1], so that we
will be able to express a general solution through them, as we did with the
Fourier series.

7.2.4 General solution

For each value of C'=[(l 4 1) we have the solution
®(r,0) = Ar! P(cos8) + Br~"! Pi(cos ) (7.49)

As we did for the solution of the Laplace equation in polar coordinates,
the boundary conditions will be completed by requiring the function to be
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Laplace equation in spherical coordinates

regular at infinity and at 0. For example, if we ask ® to be finite at zero,
we will set B = 0 since for [ > 0

limr ! = 00 (7.50)

r—0

so that the general solution is

0 ~
ZA; ! Py(cos 0) (7.51)
1=0

On the other end, if we ask ® to go to zero at infinity, we set A = 0 and
obtain the general solution

ZBZ =1 P(cos 6) (7.52)
1=0

The boundary condition on the sphere at 7 is (for example in the eq. 7.51
case, r < T)

o(F,0) =Y A7 P(cost) = f(0) (7.53)
=0

giving, through eq. (7.48)

1

A= /Tr Py(cos®) f(0) sind do (7.54)
™ Jo

In the solution is given for r > 7 we get the same expression with

A = rHl/ Py(cos®) f(0) sinf do (7.55)
0

7.3 Introduction to the general case
In case ® depends also on ¢, to solve

%2&(7“237@(7“, 0,0))+ %%@in 009 ®(r,0,p))+ ;82@(7“, 0,0) =0

ing r2sin?6 ¢
(7.56)
we ask
= R(r)0(6)e() (7.57)
so that
OO 5,520, ) + 02 g i ppe0) + XD 2000 = 0
(7.58)




7.3 Introduction to the general case

Let us multiply everything by

r2sin? 6
R(160)6(¢) (7.59)
to get
sin?6 ), sing o i Lo
0 Or(r0,R(r)) + @(9)39( 00p0(0)) = ) 9,9(¢) (7.60)

As in the best separation of variables tradition, we have an equality between
functions of unrelated variable, so that we may set

L o) =
Sl =c (7.61)

@ is an angle varying between 0 and 27, so that its boundary conditions are
necessarily

#(0) = ¢(6 + 2n~) (7.62)

and we can use the results of section 2.8
o) =™,  meZ (7.63)

Substituting in eq. (7.60) we get

sin’ 6 sin @ .

o dr(r?0,R(r)) + w@@(sm 0040(0)) = m? (7.64)
L PR = K = —— L ay(sin00,0(0)) + - (7.65)
R(r) " " O(0)sin b sin? §

K is again a constant, since we have on the left a function of r, and on the
right a function of 8. The radial equation,

0,(r?0,R(r)) = KR(r) (7.66)

is the same we studied in section 7.2.1. We just set K = (] + 1) and write
the solution as

R(r) =7t (7.67)
The 0 equation becomes

2

1
———0p(sin 0990 (0)) + —5—
sin” 6

sin 6

0(0) = (1 +1)0(6) (7.68)
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Laplace equation in spherical coordinates

Using the same change of variables of eq. (7.16) we get

589(@11 00p0(0)) — —0y [(u® — 1)0,0(u))]
me ) (7.69)
o) - O(u)

sin2 6 1—u?
and thus

m2
1 —u?

Ou [(u? = 1)8u0 (u))] + O(u) = (1 +1)0(9) (7.70)

The solutions to this equation are called associated Legendre polynomials
(see Byron-Fuller page 256)

m d™P(0)
P, 0)=(1-
m(®) = (1)

(7.71)

with [ € {O,IN}, m = {—-l,—-l 4+ 1,...,0 — 1,1}. The functions (spherical
harmonics)

Yim (0, 9) o< Prm(0)e™? (7.72)

i.e. the solutions of the angular part of the Laplace equation, satisfy the
orthogonal relation

21 s
/ d / d9sin 0 (Yir 1 (0,0))" Yim (0, 0) = 010 0m r (7.73)
0 0

It is possible again to show that these functions are eigenvectors of a self-
adjoint operator, so that a combination of these functions may be used to
represent each regular function on the sphere. We thus have that a general
solution for r <7 (see the discussion leading to eq. 7.51) is

o) l
O(r,0,0) => > At Yim(0,9) (7.74)
=0 m=-1
while a general solution for r > 7 is
00 !
O(r,0,0) =3 > Anr T Yim(0, ) (7.75)
=0 m=-1

In the former case, if a boundary condition on the sphere is given as

(T, 0,0) = f(0,9) (7.76)
we get

1 2 ™ ) .
A= [ o [ dosind M6, 10,00 (17D
0 0
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7.3 Introduction to the general case

while in the latter
27 T
Ay =74 [ [ dbsind (Vi (0.0 0.0) (119
0 0

We will come back on the properties of spherical harmonics in the next

chapters.
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Chapter 8

Orthogonality (an invitation
to Sturm-Liouville theory)

8.1 An other approach to orthogonality

In previous chapters we studied some orthogonal systems of functions. For
example, we have seen (eqs. 2.75,2.76) that defining

Sp(x) = \/Zsin(nx) (8.1)

/07T Sp () S ()dx = Op, (8.2)

Let us study these relations from a different view point. Let us compute,

we have

using only the definition of the s,

n? /OW S ()8 (2)dz = — /OW (j;sn(x)) s () =

B /0” xa ((d‘isn(xo sm(:v)> do + /OTr <dd$sn(:c)> (Czcsm(x)> da

where we have used differentiation by parts and the trivial differentiation

(8.3)

properties of sine. Now we may use

[t (o) s = [ (o) suta] =0

(since s, (0) = s (m) = 0) and obtain

n2 /07r s(@) 5o (@) = .. = /OW (;‘;sn(@) (;lxsm(:v)> do =
- /07r o (2) (j;sm(x)> do + /OTr ° (sn(x) (Czism(x)» da



8.1 An other approach to orthogonality

Again we have

/07r % (sn(m) (ngsm(x)» dx = [sn(m) <dil€sm(:n))]: =0  (86)

so that
n? /OTr Sp(x)sp(x)de = ... = —/07r Sp(x) (dd22 > dr =m / Sn ()8 (2)dx
8.7)
Or (=) [, (@)sa)da =0 (59
If n # m, we obtain
/07r Sp () S (x)dx =0 (8.9)

i.e., we found another way to obtain eq. (2.76).

More in general,operating similarly to section 6.5.3, we may consider the
operator L = % on the space of functions f(z) such that f(0) = f(7) =
0 and see, using multiple times differentiation by parts and the fact that
functions are equal to zero in 0 and 7, that

.29 = [0 (100 de =
| (v C>l (ot >))dx; /d (Cfmu(m))*z (o)) do
o) ar [ (L p) (Lo)) ar =
{/ d<<<dd ﬂ) ' ” dz)(d g* | _ (810)
i (0@ ) o) o [7(S0@) ) oyt =
(v o] + [ () stwas -
o+ [ (de D) sleio = (11,9
= Lf

It is thus not surprising that the eigenfunctions of L are orthogonal, since
eiegnvectors corresponding to different eigenvalues of a self-adjoint operator
are orthogonal (eq. 6.87).
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Orthogonality (an invitation to Sturm-Liouville theory)

8.2 The Sturm-Lioville problem

8.2.1 Definition
Let us assume that we are interested in solving the differential equation

d? d

alz) o5 ¥(@) + B(z) - v(2) + v(2)y(z) = M () (8.11)

where a(z), 5(z) and y(z) are real functions. This problem may be consid-

ered an eigenvalue problem,
Lip(x) = M () (8.12)
if we define the operator

d2
da?

+B@)L 4 4(@) (3.13)

a(r) .

The function () is defined on an interval [a, b] and satisfies some boundary
conditions in a and b (e.g., periodic conditions, zero value, zero derivative,

etc.). These properties define a functional vector space.

8.2.2 Scalar product

To study this problem we introduce a more general definition of scalar prod-
uct

b
(6. 0)w = / 6" () (2)w(z)da (8.14)

where w(z) is a real function with w(z) > 0, while ¢, ¢ are functions in the
considered vector space. We see that we have

b
(6, B = / W (@)p(@)w(z)dz = (6, 6) (8.15)
and
b
(, a1 + Bd2)w = / V¥ () (ady (z) + Bda(x)) w(x)dr =

b b
a / 0 (@)1 () (a)de + B / V(@) de(@)w(@)de = al, $1)w + B, b2}
(8.16)

We also have

b
(16, Py = / [2w()dz > 0 (8.17)
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8.2 The Sturm-Lioville problem

since the integrand is positive, |¢|>w(z) > 0.

We have thus defined a scalar product if

(0, ) =0=1=0 (8.18)

Since the integrand is |[v|*w(z)dx > 0, (1,%), can be zero only if the
integrand is zero everywhere!. (x) may thus differ from zero only where
w(z) = 0. We will say thus that ¥ = 0 is equal to zero with respect to
the measure (the weighted integral) defined by w. In the following we will
introduce w in such a way to obtain some interesting results concerning the
eigenvalue problem (8.12), and we will be content with this definition of
1) = 0 since it will serve our purposes.

8.2.3 Adjoint operator

Given a linear operator A, we define the adjoint operator Al (although we
will drop in the following the subscript w) as the linear operator such that
Y, ¢ we have

(¥, Ad)w = (ALY, 3w (8.19)

/a " (@) Ad () = / b (49@) d)w(z)dn (8.20)

8.2.4 Defining w so that L is self-adjoint

We know that self-adjoint operators have interesting properties, between
them the fact that their eigenvectors are orthogonal, and may be used to
define an orthonormal basis. We will now show that for the Sturm-Liouville
problem (8.11) we may define a suitable w(z) such that the operator L is
self-adjoint with respect to ().

Let us compute

/ab V*(z) Lo(z)w(z)dr = /abw(g;)*a(a;) <j;¢(a:)> w(z)dz+
/ab¢(x)*ﬁ(w) (;ﬁﬂ(@) w(x)dz + /abw(fﬂ)*’y(x)qb(x)w(x)dx )

'More properly, different from zero on a set of zero measure.
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Orthogonality (an invitation to Sturm-Liouville theory)

We now use derivation by parts

= [ 2 oo (o ) ww)] dr- [ L @ratu)

b b b
| @ s@e@u@lds - [ ole) 1 () Bayu@)de+ [ o) @i = ()

If one of the following holds
1. ¢ and ¢ are 0 in @ and b
2. the derivatives of ¢ and ¢ are 0 in a and b
3. ¥, ¢, a and w are periodic in [a, D]
4. wisO0in a and b

5. «ais0in a and b
we have for the first term

v@a@ (Lo ) wiw)| =0
[ (dm > L

Let us assume this to be true, and get

b
(W, L) = / () Lo(@w(z)dz = [(x)*B(z)d(x)w(z)]:

(8.22)

(8.23)

(8.24)

(L) (L)) atwywas — [ v @) (Low
/a <dx dx o da dx

(L g sape@owis - [ vy B de)ds
/a <dx a dx

b
4 / () (@) (@ )w(z)d

(8.25)
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8.2 The Sturm-Lioville problem

Let us now compute

(b6t = [ (L0t0)) stepotenis = [ otarato) (soto)) oo

[ eersto (JZW) w(e)do + / V(@) (@) (w)u(e)da

The only difference with the previous case is that now derivatives are acting

(8.26)

on the complex conjugate of 1 (due to linearity, the complex conjugate of
the derivative is the derivative of the complex conjugate). As a consequence,
also in the result the only change will be in where the derivative acts, and
thus

b
" d
7 (a(@)w(z)) d(z)dz

b
(i), B = / (L)) o()w(@)ds = [b(x)*B(x)é(x)w(x)]
a b d
Ly

oz
- [ (ver) (o) e - [ (o)
[ vt (Eow) de - [t & @) s

b
4 / () (@) b(e)w(x)de

(8.27)
A few terms are left unchanged, so that
(L, ¢)w — (U, Le)w =
[ (@) & @@ oo+ [ vy ok @) <;;¢<x>) s
- [ vers@e) (dxczxx)) ar+ [ (L )

(8 28)
: (L, 8w — (0, L)

[ (o) o) [ - & @] @ w0
/w < )[dx( (w)w(w))—ﬁ(@w(:c)] dx

In order for this term to be zero, and thus, under the hypothesis (8.24), for
having LT = L, we need to choose w so that

* (a@pw() = Al (8.30)
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Orthogonality (an invitation to Sturm-Liouville theory)

We may try to solve this latter differential equation in order to obtain w(x).
We use again partial differentiation

(pe@) u) + (@) el =) 31

and we rearrange it as

%w(m) = w(x)w (8.32)
Let us define
g(x) = W (8.33)

(the prime being a short-hand for differentiation with respect to x) which
requires that a(z) # 0, and obtain

() = glwyul) (334
This equation is solved by
w(z) = Cexp [/ﬂf g(T)dT] (8.35)

since

d xX x

T <C’exp [/ g(T)dT:|> = g(z)Cexp [/ g(T)dT] =g(z)w(z) (8.36)
We thus have found an expression of w(z) that gives us LT = L.

8.2.5 A different formulation of the problem

We do not necessarily need to perform an integration to find w. Let us write

o1 (i (v0e@fv@) ) +r@we =@ @)
Using

2 (a(e)u() = () (8.:38)

and partial differentiation we have

1

w(z)

2
ww)ala) (5200 )55 (4 @) Lo = i)

w(z)
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8.2 The Sturm-Lioville problem

from which we get

1 d? 1 d
Syu@ate) (20 ) + @) 1 v +(@ul) = Mia)

(8.40)

which is equivalent to our original problem

d? d
o) (2¥l@) ) + Blo) o vla) +2()oe) = Ml) (841
This means that if we define

@) = wiz)o(z) (8.42)

the differential problem

w(z)

5 (i (105 0@) ) +re =) a3)

is equivalent to the Sturm-Liouville one.

8.2.6 Orthogonality

If now we have two eigenfunctions of our Sturm-Liouville problem, i.e

La(z) = Mpa(z),  Lpw(x) = Ny () (8.44)

we may easily verify (repeating our general analysis of section 6.3.5, and
using the fact that (,),, satisfies all the scalar product properties) that

AMx, Ua)w = (x, AM0x)w = (x, Laby)w =
(LT, Y2)w = (Loa, ¥a)w = Mbx, a)w = A (x, Yr ) (8.45)
= A= )\"

assuring us that all eigenvalues are real. Furthermore, using this last result

M, ¥aw = (Ux, Aoa)w = (Y, Lin)w =
(LWx, 0r)w = (Low, 0x)w = Nn, dadw = N(Ux,¥a)w  (8.46)
= (A= X){Un, ¥a)w =0
From this follows that two eigenfunctions corresponding to different eigen-
values, A\ # X/, are orthogonal

(Ux,a)w =0 (8.47)

The task of showing, for an infinite dimensional vector space, that the eigen-
functions are a basis for the space is a non-trivial problem in functional
analysis, that we will just assume to be true.
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Orthogonality (an invitation to Sturm-Liouville theory)

8.3 Application to Legendre polynomials

In our study of the Laplace equation in spherical coordinates we studied (eq.
7.12) the equation

sirlled% (Sinejge(e)> =X6(0), 0 ¢€0,7] (8.48)

By comparison with eq. (8.43) we see that this is a Sturm-Lioville problem
with

w(f) =sinf, n(d) =a(f)w(d) =a(f)sinfd =sinf = a(f) =1 (8.49)

We see that o # 0, and w assumes zero value in 0 and 7 (and it is positive
in (0,7)), so that all the requirements for the Sturm-Lioville theory are
satisfied. This means that the eigenvalues A are necessarily real, and?

/ @,\(0)@)\/ sin 0df = (5)\’)\/ (8.50)
0

The factor sin 6 in the integral comes from the weight w(6). It is extremely
useful, since we want our eigenfunctions to be orthogonal when integrated
on the sphere, i.e. with integration volume da? = 2 sin Odrdfdey.

2 Assuming the functions © to be defines as real, something that we know to be possible
from our previous study of Legendre polynomials
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Chapter 9

The hydrogen atom

9.1 Introduction

In chapter 3, we discussed how the Austrian physicist Erwin Schrodinger
introduced a partial differential equation to study the motion of extremely
small particles, such as electrons (Quantum Mechanics). We then applied
the theory to compute the possible energies of particles trapped in a potential
box.

That was a simple problem, very suitable to a first application of the
theory, but it wasn’t obviously the problem that Schrodinger had developed
his theory for. Has he wrote down his equation, he tried to apply it to a real
natural system, one of the simplest and more common physical systems in
nature: the hydrogen atom.

The hydrogen atom is composed of two particles, a proton and an elec-
tron, with opposite charge. It is similar to a small planetary system, in
which the heavier proton plays the role of the Sun, and the lighter electron
the role of the Earth. We will assume that the electron and proton are point
particles without inner structure (this is true, as far as we know, for the elec-
tron, while the proton is composed of quarks, held together by a force, the
Strong Force of Quantum Cromodynamics, whose mathematical description
is extremely complex and still not fully understood), that their dynamics
may be described by the non-relativistic Schrodinger equation (quantum
generalisation of Newtonian dynamics), without taking in account relativis-
tic effects (Dirac equation, quantum generalisation of Einstein dynamics),
and that the electric field giving the interaction between the two particles
can be described by the classical Coulomb force, withouth taking in account
the quantum nature of the field itself.

These assumptions make the study of the system extremely simpler.
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9.2 The equation

They are nevertheless good approximations when studying the hydrogen
atom!, so that when Schrédinger applied his theory to the hydrogen atom,
was extremely satisfied of the agreement between theory and observations?.

The assumption makes the study of the system simpler, but we will still
need some effort to arrive at a solution. The study of the hydrogen atom
will represent the highest hurdle in our study of separation of variable meth-
ods, and will lead us to introduce some new techniques, as for example the
algebraic treatment of angular momentum. It may be interesting to see how
hard is to find a solution to a simplified version of one of Nature’s simplest
systems. It gives the perspective that maybe some of the extremely simple
and straightforward solutions proposed for real world systems in economy,
social systems,etc., may not be as comprehensive as their proponents like to
state.

9.2 The equation

Let us first assume that, by being much more massive®, the proton may be
considered as fixed*. The electron moves then in a Coulomb potential

o(r) = (9.1)

r being the position of the electron with respect to the proton (located in
the origin), and e being the charge of the proton. Since the charge of the
electron is —e, the (classical) energy of the electron is given as a function of
its velocity v and position r as

1, €

'For example, the energy of the fundamental (lowest) state of the system, is negligible
with respect to the energy that corresponds to the mass of the electron corresponding to
the celebrated E = mc? equation, and thus relativistic effects may be ignored in a first
computation

2Obviously, the Dirac equation, Quantum Electrodynamics (quantum treatment of the
electromagnetic field] and Quantum Cromodynamics where developed after Schrodinger’s
theory. Nevertheless, Schrodinger first tried to develop an equation taking in account
Relativistic effects, but the equation did not agree with observations, and he decided not
to publish it. The equation is nowadays known as the Klein-Gordon equation, from the
names of the physicists that re-discovered it. The equation describes a particle without
spin, and thus is not apt to describe the relativistic dynamics of the electron, as the Dirac
equation thus

3The ratio between the proton and electron mass is ~ 1836.

4This approximation is studied in appendix 9.B (you may want to read first appendix
9.A).
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The hydrogen atom

m being the electon mass °. Remembering that Schrédinger’s theory con-
nects the energy to time derivative, and the momentum to space derivative,
we recall the classical relation

p=mv (9.3)

and obtain 2 2

=5 (9.4)
Now we follow Schrodinger’s recipe for a quantum equation, namely we
replace the energy with a time derivative (multiplied by A, ¢ being the
imaginary unit and i the Plank constant dividwed by 27), acting on the
wave function V(t,x)

E — ihV(t, x) (9.5)
We then replace each component of the momentum p; with —ih9;, or

2 2
p h 2

— ——V*v .
o = o VUL X) (9.6)

and finally replace the potential with a multiplicative operator

2 2

e e

2 Tt 9.7

= Su(tx) (9.7)
The Schrodinger equation for the hydrogen atom is then

n_, e?

AU (L, x) = ——VU(t,x) — — (L 9.8
V(%) = — - V2W(tx) - S0t x) 9)

Since the potential depends only on r, is better to use spherical coordinates,
i.e. (refer to eq. 1.83)

ihY(t,r, 0, p) =
Il 5 1 1 9 e?
T o | 9Yr T 9 i 5 . 9, @777_7\:[]77a
o r28 (r<o,) + 3 s1n989(sm989) + > Sinzﬂaw (t,r,6,p) . (t,r,0,p)
(9.9)
9.3 Time independent Schrodinger equation
Let us use as usual the separation of variables technique and assume
U(t,r,0,0) =T(t)(r,0,0) (9.10)

5We are using the definition of charge that allows us to write potentials and forces
without having constants such as €p appear. See section 9.5.2
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9.4 The angular solution

We get
P(r,0,0)ihT(t) =

1 ) 1 _ 1 9 e?
- T() <2m [Tza’”(r o) + m@g(sm 00p) + rQSingea@] Y(r,0, ) — 7711(73 0,¢)
(9.11)
We divide each side by ¥ and obtain
I
1 1, 1 , 1, e
T 0 0.5 (2m |:r287“(r or) + 2 Sineae(sm 00p) + TQSingeagp] Y(r,0,p) — 7¢(T79780)

(9.12)

where E is a constant (the energy of the time independent solution), due as
usual to the fact that we obtained functions of independent variables on the
two sides of the equality.
The equation
ihT(t) = ET(t) (9.13)

is trivially solved by
B
T(t) =e "t (9.14)

The corresponding spatial solution, that we may call g, is given by the
time independent Schrodinger equation

o2m | r? r2 sin r2sin%6 ¥

Eyp(r,0,9)

1 1 1 2
(g | 2000700 + o gOulsin000) + 502 = ) vislr6.0) =

(9.15)

9.4 The angular solution

We already know (see eq. 7.72) functions (spherical harmonics) Y] ,,(6, ¢)
such that

- (139(8111 005) + 162) Yim(0,0) = 0+ 1)Yim(00)  (9.16)

sin 6 sin?f ¥
where
Yim(0, ) o< Py (0)e™? (9.17)
P, (0) being an associated Legendre polynomial with [ € {0,IN}, m =
{=l,=1+1,...,1— 1,1}, so that we can just assume
@Z}E (Ta 97 (ﬂ) = RE(T)YZ,m(ea SD) (918)
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The hydrogen atom

and obtain an equation for Rg(r). It is nevertheless useful to use algebraic
techniques common in Quantum Mechanics to study the relation between
the spherical harmonics and angular momentum, and explicitely show the
properties of spherical harmonics. This is done in appendix 9.C (you may
need to read first appendix 9.A).

9.5 The radial equation

Substituting eq. (9.18) in eq. (9.15) we obtain

1
2m r2

R2L(1 + 1)

22 RE<7’)_6:RE(7“)=ERE<7’) (9.19)

aT(T'?(?T)RE(r) +

where [ is an integer (possibly also 0, see appendix 9.C).

9.5.1 First change of variable

Let us now define
&(r)=rRg(r)= R(r) = £r) (9.20)
r
(we dropped the suffix E in £ but should be clear that the solution is found
for given values of E (and [).
Since the radial equation contains the term 9, (r20, Rg(r))/r? let us first

compute

(0. (22)) = (Fagt) - 5e0)) =ronen ey o)

and then

1 1 1 1 1 1
20 (2 (0 () = 20 Conetr) - €000) = e+ 0260)- onelr) = SoRe(r)
(9.22)
The equation becomes then
2 1 R+ 1) e &)
—%;835(7’) + Wf(r) - 7725(7”) = ET (9.23)
Multiplying by r we get
h? R+ 1 2
opetr) - U ey 4 Cey v mery =0 (0.29)
o R21(1 2
2 1
)+ 5 (gt S E) =0 @)
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9.5 The radial equation

Our change of variables led thus to an equation in which only a second
derivative an a multiplicative term dependent on r appear. We may hope
this equation to be solved more easily.

For a reason that will be clear soon, we re-write again the equation as

2 w211 E
27;;6 (_ (1+1) n 1 4 €2> £&(r)=0 (9.26)

2
0:8(r) + 2mr2e? r

9.5.2 Dimensional analysis (caractheristic lenght)

We wrote our potential as

Q

— 9.27
- (9.27)
You may be more familiar with
2
e
9.28
dregr ( )

Our choice corresponds to a definition of the charge that makes dimensional
analysis easier (since we do not introduce a new “charge” dimensionality,
but define charge based on mass, length and time). The magnitude of the
electrostatic force is

F = o (9.29)
so that ML )
[ [;][2 ] =[F] = [[;:]]2 (9.30)
. 3 L
[&zmﬂﬁ<:mzwbw> (9.31)
Recalling that )
= 1] = T (9.32)
we verify that the following quantity is a lenght
h ML) T)?
) = M G = 239
We may thus define the Bohr radius®
o = % ~ 5.310"1m (9.34)
Using this quantity, the equation becomes
B2%(r) + T2() (_l(l;;)m n % + 6E2> £(r) =0 (9.35)

SIntroduced in the first quantum theory of the atom by the Danish Nobel prize winner
Niels Bohr.
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9.5.3 Second change of variables

Since the equation itself is suggesting us a natural unit (a quantity with the
dimention of lenght that appears in the equation) let us use it to misure
lenghts, and perform the change of variables

u = L, =T =Tou (9.36)
o
0 1 1
Op = Oyo = —0, = 02 = — 02 (9.37)
ar o G
Under this change of variable, the differential equation becomes
1 2 I(l+1) 1 E
— 02 = (- — 4+ = =0 9.38
e + 2 (A4 s ) ew (9.39)
or, multiplying by 7"8
l(l + 1) 2 70
2 _
7€ (u) + <— 2 + " + 2€2E) E(u)=0 (9.39)

9.5.4 A further dimensional analysis (characteristic energy)

We may now note that

62] [M][L]* _ [M][L)?
bl — = [E 9.40
iRk 40
Let us call the characteristic energy
2
e
Fy=— 9.41
0= 5 (9.41)
and our differential equation becomes
i+1 2 E
2
— -+ — = 42
ozt + (-5 4+ 24 2 Y etw =0 (9.42)

We are interested in studying electons in the atom, meaning those that are
bound to it. “Bound” means that the electon cannot reach, unless external
energy is provided to it, an arbitray distance from the proton. At this
arbitrary (infinity) distance, the potential due to the proton is zero, so that
the (classical) energy would be

2
L (9.43)

2m

Since the electron (again, from a classical viewpoint) can go everywhere the
conservation of energy law allows it to go, if it had £ > 0 it could go at
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9.5 The radial equation

arbitrary distance. We thus assume, for bound electrons, ££ < 0. Since
Ey > 0, we write

Eo E 1 Eo
=/-22 - S =sE=-2 44
" £ VT E n n? (9.44)

At the moment, n is just a new name for a quantity that we know to be
positive (but later we will show that n needs to be an integer).
The differential equation is now

D2€(u) + (—l(l;;l) + 2 1) E(u)=0 (9.45)

u  n?

9.5.5 Asymptotic behaviour

The equation has simplified a lot, but in order to solve it we should better
understand how it behaves for large and small values of r (far or close to
the proton) or, equivalently, for large and small values of u

Large u

For u — oo, we have

1 1 1
ﬁ — 0, E —0 ﬁ = const (946)

so that we may approximate the equation for the behaviour far from the

proton as
1
aggfar(u) = ﬁffar(u) (947)
This is easily solved as
gfar(u) = ei% (948)

Now, since we have n > 0 and u > 0, the only non-diverging solution is

u

Ctar(u) =€ n (9.49)

Small

For v — 0, the term u~2 diverges faster than the others

11 1 o1
@+a+c:?(l+u+CU)—>@ (9.50)

so that we may approximate the equation for the behaviour far from the
proton as
I(l+1)

u?

agfnear (U) = &near (U) (951)
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We try a solution as
Encar(1) = " = Oubnear(v) = ku' ™" = Onear (1) = k(k = 1)ut™2 (9.52)
so that eq. (9.51) becomes
E(k—Duf 2 =10+ 1D)u"? = k(k—1)=1(1+1) (9.53)
This equation has two solutions
k=1+1, k=—-l (9.54)
but, again, since [ > 0 in order for u* not to diverge for u — 0, we have”

Enear(u) = UH_I (955)

The ansatz for the solution

The behaviour for small and large u may suggest us the following ansatz
(guess) for &(u)

§(u) = &ar(u) f(u)énear(u) = UH_IE_%f(U) (9.56)

To see if this assumption is reasonable, we have to insert it in the equation
and see if we find a solution for f(u).

9.5.6 The equation for the function f(u)

Let us compute

0u(0) = 1+ Ve )+ (-
ot o (L I g (L1 1 0

u no flu) u no f(u)
(9.57)
and
el 1, 411 oW _
i - ) (557 S) e (8 )
(L L o)’ 82 fw)  (Duf()? _
5”( TR (0 ( )

(+1° 1 (@Ouf)? <Z+1 <z+1>a f) 20uf() 11 () (Dufw)?
et (- + 2+ G -y S A )
e UV 1 2041) (l+1)8uf<u)_26uf(u)_l+1 0 f (u)
=t ({0 g - B0 BT R - )

(9.58)
"Strictly speaking, for [ = 0 also k = —I is not diverging. Anyway, this process is more

guiding us to the ansatz (9.56) than a strict derivation.
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9.5 The radial equation

Now we note that

(+1)~(+1)(0+1) =1+1)+11+1) (9.59)
so that
e — e (z; . 1(zu+2 ) z;1 - 2(1@1) % 2(1 2;)(%]0( w) 2au](f(z;)
R\ o (WD 2041 1 204+ Do) 20uf() | 5w
i) )‘5( >< 22 w TRt T ai) nf (u) f(u)>
(9.60)

Substituting this in eq. (9.45) we get
() (1(z+1) 2(1+1) . 21+ 1)0uf(u)  20uf(u)

nu n? uf(u)  nf(u)
) 2 (1+1) z+;)(a>f(u) zif{ +z>
2(l+1 z+u;)( gf(u) zzf{ ), z) _
f(l)gf() (ZZ:;()zauf(u) 2n—2(l+1 L o
9.61
or, multiplying by f(u),
oy + I 50y X0 D sy 20 o

9.5.7 A third change of variables

This equation becomes simpler if we perform a further change of variables

2u nk 8k 2
so that
4 2 (l+1)n—”—k n—1—1
ﬁf‘?if(k) T 2 —20kf (k) + QWJC(]‘C) =0
2 2 (9.64)

- % <8,%f(l-c) n Wakf(k) + "_Ii_ 1f(k;)> —0

Multiplying by 4k/n? we get

kOZf(k) + (20 +1) —k)Opf(k)+ (n—1—1)f(k) =0 (9.65)
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9.5.8 Power series

Let us define
=2(l+1), B=n—1—-1 (9.66)

so that
kO f (k) + (o — k)0 f (k) + Bf (k) = 0 (9.67)

We look for a power series as a solution

k)= cik! (9.68)
j=0
This means that
RORf(R) = kO > jeik?™ = k> j(i=1)ek/ 2 =Y j(i—1)ek? " = Zu 1)ejki—
j=0 j=0 §=0
(9 69)

the last espression being due to the fact that the j = 0 term is equal to 05.
Also

(o — k)Op f (K Zayc kit Z]c]k:] Za]cjkj ! Z]c]k:]

(9.70)
where again we got rid of one term that is anyway equal to zero and that

we do not need. Finally, since
= Bk (9.71)
=0
we get

oo oo
Z 3G — K + ajkl ) +Z (B—j)c;k? =0
7j=1 7=0

(9.72)
= Zj(cj(j — 1) +a)k/ " + Z(ﬂ —j)eik! =0
j=1 Jj=0
Let us use in the first sum
i'=j-1 =j=j+1 (9.73)

8Also the j = 1 is equal to zero, but we perform only the manipulations that we are
going to need.

155



9.5 The radial equation

so that
00 ) 00 . '
> e+ DG + R+ (8~ )ek! =0 (9.74)
§'=0 j=0
and, re-naming j' = j again in the first sum

o

i+ 1)+ )k + ) (8= j)ek! =0

= 7= (9.75)
=Y K (e ((G+ DG+ ) —¢(j = 8) =0
j=0
This will be true for any k provided that beginequation
G (U+D0+a)—¢(-p) =0 (9.76)
or .
R ey SR (9.77)

9.5.9 Conditions imposed by the power series solution

If we perform the j — oo limit in the previous equation we get
Ci
Ci+1 =~ 7] (978)

but this asymptotic is the behaviour is like the one of the exponential series

eXP(k)Zic~kj:ilkj:>c-:l:>CjH: ! 1 (9.79)
T~ T A TR RV

But this series diverges for k — oo (i.e. for large u and large r). We want
to avoid such a diverging solution?, and thus we need some

c~

-1 =0 (9.80)

for a given integer j. But this means that the numerator in eq. (9.77) is
Zero
j=Bf=n—-1-1 =n=I0+1+] (9.81)

Since j € (0,IN), I € (0,IN) we have

n € NN, n >l (9.82)

9Wave solutions have to be normalised to be possible to identify as probability distri-
bution functions; furthermore since we are looking for a bound state of the electron, we
don’t want the electron to be extremely (divergingly!) probable to be found far from the
proton.
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The function f (called a confluent hypergeometric function assumes form

- B, BB+1) o BB+B+2) 3
fj(k)o<1+ak+a(a+1)2!k a(a+1)(a+2)3!k + ... (9.83)
with the sum stopping at
j=n—101-—1 (9.84)

9.6 The solution

Summarising what we have found, physical solutions corresponding to bounded
states of given energy for the Hydrogen atom may then be identified through
the 3 numbers n, [ and m

|n, m, 1) (9.85)
All these numbers are € Z. n is a positive integer while [ is a non-negative
integer. We have [ < n, so that for a given value of n we have l =0, ..., n—1,
while for each value of [ the integer m may assume values —I, —(+1,...,1—

1,1. We know, as shown in detail in the appendices, that h2[(l + 1) is the
value assumed by the magnitude of the angular momentum in the physical
state, while Am is the value assumed by L,. The energy of the physical state
is (eq. 9.44)

Ey

E=—
TL2

(9.86)

depending on the only n (the energy is independent of the angular momen-
tum). The minimum of this energy is assumed for n = 1.

The energy, or better the Hamiltonian operator H , the total angular

momentum L? and the z component L. are a set of commuting operators!”

that completely specify the state of the electron!!.

Remembering

2 2
L (9.87)
n  nro

k

we get that to the state |n,l,m) corresponds the function (recall all the
change of variables that we performed!)

r

1/r I+1 o 2r
wn,l,m(r,e,mz() e ! 1(0) Yim@.¢)  (9.89)

19Ff commutes with the angular momentum and its components since its expression is
given by L? itself plus r dependent terms that are commuting with f/27 since the latter
depends only on angles.

1 Actually the electron has also an internal angular momentum, its spin, but the de-
scription of spin goes beyond the purpose of this course.
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The lowest energy state has n = 1, so necessarily [ = m = 0, and since

fOk) o1
we have
7/)1,0,0(7", 6, (10) X e_a
or, using
oo _r oo
/ e "o = |:—’l“0€ TO] =70
0
we get

1 _=
Y1,00(r,0,90) = —e 70
o

The general time dependent solution is

oo n—1 1

‘I/(t, 7,0, 90) = Z Z Z e_i%twn,l,m (7"7 0, 90)

n=11=0 m=—1

(9.89)

(9.90)

(9.91)

(9.92)

(9.93)
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Appendix

9.A A very shorth introduction to analytical me-
chanics

There is a very useful function in Classical Mechanics, the Lagrangian func-
tion '2 that allows us to easily write down the energy and the equations of
motions in different coordinate systems.

9.A.1 Cartesian coordinates
Single particle

In order for the Lagrangian formulation of mechanics to be valid, it has to
be equal to the Newtonian one in Cartesian coordinates. We write, for a
single particle moving under a potential U

L(x,v) = %mv2 —U(x) (9.94)

where we have obviously

d \* [d \* [(d\*
2 _ .2 2 2 _
vt =vy o, L= (dtx> + (dty> + <dt2> (9.95)

The first term

T=—-mv

5 (9.96)

12The great French mathematician Joseph-Louis Lagrange, was actually Italian, born
in Turin (Kingdom of Sardinia) in 1736 by the name Giuseppe Lodovico Lagrangia. His
mathematical treatment of Newtonian Mechanics is, along with the work by Irish William
Rowan Hamilton (Dublin, 1805-1865) that extended and completed it, the basis of modern
theoretical physics. Lagrange moved to France only when he was 51 (before that he had
spent 20 years in Berlin). Lagrange, whose great-grand father was French, became a
Senator of the French Republic and was buried, at his death in Paris in 1813, in the
Panthéon along with other great contributors to glory of France.
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9.A A very shorth introduction to analytical mechanics

is called kinetic energy, so that
L=T-U

is a shorth hand for the Lagrangian.

Let us now define
0L

pz‘—%

e.g.,
0L
vy

Dz = Uy

(9.97)

(9.98)

(9.99)

These p are clearly equal to the momenta of newtonian Mechanics. The

Lagrange equations are now

d oL

i = o,

(9.100)

that, in Cartesian coordianates are equal to the Newton equations of motion

d? ou

m——xr; = —
dtZ ! 8.%@

Many particles

We write the Lagrangian as
1 2
L(x,v;) = Z JMavi — U(x;)
i

where

2 _ .2 2 2
Vi = Vi, TV, TV

We define again

oL
Pij =
e aviyj
and the Lagrange equations
d 0L
dtpld B 8a:i7j

are again equivalent to the Newtonian ones

(9.101)

(9.102)

(9.103)

(9.104)

(9.105)
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Energy

The energy (or Hamiltonian function) is defined by

p’L,jvx’L,j sz jVij — l’z,jWi,j(ﬁi,j)) (9106)

Let us compute this for a single particle. We need to obtain the vs as
functions of the ps. From
v =2 (9.107)
m

we get,

3 i_ 3 21’51 sz =T+U (9.108)

i:z7y»z i:‘xﬂy»z

which is clearly the energy of the Newtonian system. While H is a function
of momenta and positions, it may be shown that for a large class of systems
it is equal to a constant E (the energy).

Indeed, if L, as we assumed above, is a function of the x and v, but not

an explicit function of time, we have

d : . oL . oL .
%H = sz:pi,jvi,j +Zpi’jvi’j — - %xl 81} T Vij (9.109)

We have use Newton’s notation for time derivatives

df .
- = 9.110
i (9.110)
Now, since
oL oL .
Lij = Vijs Bv; Dijs Wl] =Dij (9.111)
we get

d : : . :
al = ;Pi,j”z’,g‘ + %:Pz‘,jvm - ;Pz‘,jvz‘,y’ - ;Pi,jvi,j =0 (9.112)

9.A.2 Arbitrary coordinates

The Lagrangian formulation becomes extremely useful when we are using
non-Cartesian coordinates. Let us assume that we may write the Cartesian
coordinates x; ; as functions of non-Cartesian coordinates g

xi,j = mi’j(qk) (9113)
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9.A A very shorth introduction to analytical mechanics

For example, in case of a single particle, we may write x, y and z as functions
of the spherical coordinates

v=x(r,0,0), y=y(r0,¢), z=2(r0) (9.114)

so that we have, for example g1 = r, g2 = 0 and g3 = . In this case,
we have exactly 3 non-Cartesian coordinates expressing 3 Cartesian ones,
but the situation may be different, and we may have less ¢s than xs. For
example, if a particle is constrained to move on a shere of radius r = R, we
may use the only 6 and ¢ coordinates,

l‘:$(9,g0), yzy(@,g&), Z:z(0>30) (9'115)

It may be shown that everything we need to do to compute the equations
of motion and the energy in the new coordinate systems is to express the
Lagrangian in them. Regarding the potential energy U we just need to
re-express it as a function of the ¢ using the relations 9.113 or the kinetic
energy we write

1 : 1 . .
= 5 Z mia:zj = 5 Z mi(a:i7j)(a:i,j) (9.116)
1] Y]

Now we use

= 0ij o, (9.117)

—~ Oy,
and obtain
1 83:” 8:%
= — E : E : ! E T 9.118
9 -~ m; -~ 6q1<; 8q k:lCIkQZ ( )
where we defined 8 5
Lij OLij _
— E =T 9.119
" Oqr Oq o ( )

After we have obtained L(qg;, q'i) we use the same technique that we applied

in the Cartesian case,
oL

R 12

Pi = 5 (9.120)
oL

e — 121

i = 50 (9.121)

H(qi,pi) E Pidi — L(qi, 4i(pi)) (9.122)
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9.B Two body problem

9.B.1 Introduction

As a first application of the Lagrangian method we may show how to deal
with a system composed of two particles (electron and proton) or two “bod-
ies” that may be approximated as particles by ignoring their internal struc-
ture (Sun and Earth, or the proton itself), by reducing it to a problem
dealing with a single particle (actually most of the following treatment may
be understood just using Newtonian dynamics).

9.B.2 Newtonian tratment
Definitions
Let us call the proton “body 17, and identify it by its mass and position
and momentum in an arbitrary Cartesian frame

my, T1, P1=mir (9.123)
and the electron “body 2”

ma, T2, P2 =mal (9.124)

Although for the proton-electron problem (as for the Sun-Earth one) we
have m; > my the following analysis does not depend on the mj/mq ratio.
Let us first define the relative distance as

r=ry—r; (9.125)

and the relative velocity as

vei=vy—v, =22 _PL (9.126)
me9 mi

The centre of mass of the system is defined as usual by

R = 2T+ (0.127)
mi + ms

The denominator is the total mass
M =mq +mg (9.128)

so that
Mory + Mqry

R
M

(9.129)
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9.B Two body problem

The velocity of the centre of mass is

: MaoVy + MmiVvy
V=R=—"——"—
M

(9.130)

If we multiply this velocity by M we get the total momentum (that we may
call P)

MV = movy +myvy = P2 +p1 = P (9.131)

All this definitions were quite intuitive. We now define the reduced mass

mims
= 132
m i (9.132)

and the relative momentum, the momentum of a particle with reduced mass
and relative velocity

p=mv=m (pz - pl) (9.133)
mo ma

Energy
The energy of the system is

PP
2m1 2m2

E= +U(|r2 — 1)) (9.134)

Here we have done an important assumption about the interaction potential,
namely that it depends only on the distance between the two particles, as it

is true for gravitational (Sun-Earth) and electrical (electon-proton) forces's.

We may show that, when expressed using centre of mass variables, the
energy becomes
p? P
EF=—+— 1
2M+2m+U("r’) (9.135)

131t may be easily shown that a potential in the form U(rz — r1) implies conservation
of momentum, or the “weak” form of Newton’s third law, i.e. that the forces between two
particles have to be equal and opposite, while a potential in the form U(|r2 — r1|) implies
the “strong” form of Newton’s third law, namely that the forces have to be directed along
the direction ro — ry1. It is thus natural to expect that the fundamental forces of nature,
at least in their classical form, may be expressed through a U(|rz — r1|) potential (we are
not considering here the possibility of velocity dependent forces, such as magnetic forces).
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It is obvious that U(|re — r1|) = U(r). For the kinetic energy we have

op 2 P _ Pt pit2pp2 1 m? (pgmi + pimi — 2mimsps - p2)
_ P EPIH2P1oPy | mumz pymi+pimg — 2mamap: - Py

my + ma my +ma (m1ma)?
_phpi42piopy 1 pmi+pimd — 2mamops - py

mi + ms mi + mso mims

2 2 2 2
p5 + P+ 2p1 - P2 1 ppmi | pim2

_batpi + S + == —2p; - py

mi + ms mi + ms ma my

1 m 1 m
2 1 2 1
=ps | ——(1+— )| +pi|——— (1+ —
P2 |:m1 -+ me < mg):| P1 |:m1 -+ mo < m2>]

9 1 mo + my +p2 1 m1 + mso _p% p%
2 mi + mg mo ! m1 + ms Mo

p
(9.136)

From the expression of the energy, we see that it splits into the energy of
the centre of mass

ECM — i (9.137)
2M

i.e. of a particle with mass M subject to no potential, and thus moving with
constant velocity, and the energy of relative motion

B = = 4 U(r) (9.138)

We may thus study the two body problem just like a single body one. The
distance r is the distance between the two particles, but the position of the
proton is not the centre of an inertial frame. An actual inertial frame is
given by the position of the centre of mass R. Anyway, if m; > ma, we

have
R — miry + mors _ miry n mary ~ Ty (9.139)
my + ma my (14.@) mi <1+m>

mi mi

Again, although the mass entering in the relative energy is not the electon
mass but the reduced mass, if mq > ms we have

mimsa mims

_ _ ~ e (9.140)
o o (1 m)

9.B.3 Lagrangian treatment tratment

In the Newtonian treatment, the reduced mass and relative momentum were
introduced as a guess. The Lagrangian treatment just starts from the defi-
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nition of the centre of mass and relative distance (the ¢ variables)

r=r,—r, R=22tmn (9.141)
mi + ms

and of the corresponding derivatives (¢ variables)

V==V v, VEREW (9.142)

To write the Lagrangian in the new variables we need an expression of the
x variables as functions of the ¢ ones. We use

r=ro—ry=ro=r-+r; (9.143)
so that
R:m1r1+m2(r+r1):r ™ LR 2 (9.144)
mi1 + mso mi + mo mi1 + mso
Similarly
r=ro—ry=r;=r9—r (9.145)
so that
maore + my(ry —r) m my
R = =rp—-r——— =>r;=R+r (9.146)
mi + meo mi + me mi + meo
These latter relations show very clearly that if my > mo we have
ro~R+r r~R (9.147)
Trivially, by derivation, we have
vi=Vov—"2 oy =Viyv—L (9.148)
mi + ma mi + ma
We have now
2
mivi =m V2 + T 2’02 S VLA (9.149)
(1 4 mo) my + my
and )
mavs = maV?2 + M2 21)2 pov .y (9.150)
(m1 + ma) mi +ma
so that
m1? + mav? = (m1 4+ ma)V2 + mim3 +m2m%1}2 — MV2?4 (mima)(m1 +ma) ,
%1 272 ! 2 (m1 + m2)2 (m1 + m2)2
= MV? + 7m1m22v2 = MV? + mv?
mi +mj
(9.151)
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We see that now M and m are naturally defined by the Lagrangian formal-
ism. The Lagrangian function is

1
L= (mﬂ%+nwﬁ)—Uw@—npzé(MV?+m&)—Uw)(gwm

N | =

Again from the Lagrange formalism

oL
= — 9.153
pi 9di ( )
we get,
P=MV, p=mv (9.154)
The energy is
E=P-V+4+p-v—-1L (9.155)
using
P P
V=— == 9.156
= v=2l (9.156)
and substituting, we get
P2 p2
EFE=—+4+— 1
2]\/[4-2m+U(r) (9.157)
The equation of motion are
. oL
P = =0 9.158
= 5 (9.158)

so that the centre of mass moves with constant momentum (velocity), and

. oL U
Pi= R, T " on

(9.159)

justifing the treatment of the relative motion as a single particle under the
effect of the potential U.

9.C Angular momentum in Classical and Quan-
tum Mechanics

9.C.1 Definitions

The angular momentum is defined as the vector product

L=xAp (9.160)
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This expression may be written also using the Levi-Civita symbol &

LZ' = Zgi,j,kxjpk (9.161)
Ik

Here the indexes are assuming values between 1 and 3, and the Levi-Civita
symbol is defined has having

€123 =1 (9.162)

and being completely assymetric, i.e. it changes sign if we switch any index.
As a result terms with repeated indeces are zero, e.g.

€122 = —€122 > €122 =10 (9.163)
terms in which the indexes are “in order” are 1, e.g.
€312 = —€213= —€123=1 (9.164)

while terms in which the indexes are “not in order” are -1, e.g.

€321 = —€312=—1 (9.165)
So we have, for example,
L,=L3= 263,j,k$jpk (9.166)
Jik

j and k may not assume value 3 (since the corresponding & would be zero)
so that

L. = L3 = e3127T1p2 + €32,172P1 = TPy — YPx (9.167)

9.C.2 Lagrangian for a central potential

We have seen that when dealing with a two body problem in which the
potential is in the form U(|re — r1]), the Lagrangian for the relative motion
may be written as

1
L= imv2 —U(r) (9.168)

Since the potential depends only on r, we may want to pass to spherical
coordinates. The lagrangian formalism asks us to re-write

v? = i% 4 g 4 22 (9.169)
as a function of 7, § and ». We may obviously use

@ = Op1 + 00 + Dy (9.170)
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etc,. but an easier way is to remember, from chapter 1, that

d ds\? -
Y " ( S) . ds? = dri4rido*4r?sin® 0de® = v = P2 Hr20%4r? sin® 02

dt dt
(9.171)
and thus 1
I = I (7'42 + 7202 + r? sin? 0gb2> —U(r) (9.172)
We compute the momenta
L
oL .
oL
Py = % — mr2 sjn2 Qgp (9175)
Since U = U(r) we have
L
Py = (29 = 0 = pg = const (9.176)
oL
Pp = % =0 = p, = const (9.177)

At time t = 0, r and v assume given values, and their linear combinations
form a plane. Let us call this plane the z, y plane. On this plane (eq. 1.27)
we have sinf = 1, and, since the velocity is directed along the § = 7/2
plane, theta = 0. As a result the initial value of the § momentum is

pg =mr26 =0 (9.178)

But since this is a constant, we have

6=0 Vt,:>0:g,sin9:1 Vit (9.179)
The Lagrangian becomes
1
L=gm (7% +1r?¢%) = U(r) (9.180)

and the ¢ momentum is
P = mr’¢ (9.181)

This is related to the conservation of angular momentum. Indeed, if the
motion is limited to the z = 0 plane,

Ly = e123T2p3+€1,32%3p2 = Yp.—2py = 0; Ly = €21 3T1p3+€2,3103p1 = —xp-+2pz = 0
(9.182)
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and thus
L=1L, (9.183)

This L, is exactly p,. Indeed,
L,=|Ll=rAp=mrusina (9.184)

where « is the angle between r and v. Now wsin« is the projection of v
in the direction orthogonal to r, which is given, at first order, by r¢ (Fig.
9.C.1) so that

Figure 9.C.1: Geometrical interpretation of p,,.

L, =mr?p (9.185)

Another way to see it to use an (istantaneous) frame with x and r aligned,
so that

p=0=2=r, y=0, ,vz=rcosp+rsingpp =71, v, =7SsinE+rcospp =1y

(9.186)
and finally
L, = m(zv, — yvg) = mri¢ (9.187)
Let us thus have
pp=L,=mrip = ¢ = LZQ (9.188)
mr
and ) 12
L=3 (m2 + W) —U(r) (9.189)
Now, using
P (9.190)
m
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we have

‘ 1, L2 v} 2 p
H=pw—|—p¢ﬂ-2<mr2+m;2>+U(7"):pT+W—pr— £+ U(r)

2
ﬁJr Py

om  2mr2

+U(r)
(9.191)

or , remembering that pi gives the magnitude of the angular momentum L,

o L
2m  2mr?

+U(r) (9.192)

This is equivalent to the motion of a particle in a one dimensional potential
effective potential
L2
2mr?

Ur) (9.193)

9.C.3 Angular momentum in Quantum Mechanics
A guess for the expression of L?

For the solution of the classical problem, you may check any good book in
Classical Mechanics. We are now interested in comparing

2 L2
7 +U(r) (9.194)

with its Quantum equivalent, the time Schrodinger equation (refer to 9.15)

HY(t,r,0,0) =

s ia(r%?)—i— : B(Sineﬁ)—l—;@z +U(r) ) Ug(t,r6,9)
om |72 7T r25ing”? O 2sin2g¢ BT
(9.195)

We are left to identify the quantum operators

1
P = h2ﬁar(r2ar) (9.196)
P2er2 |t 9(sin60y) + — 2 (9.197)
r2sinf " 9T 2gin2g Y '

We will thus assume that this is the form assumed by the squared angular
momentum operator in Quantum Mechanics.
The angular momentum is obviously given by

Li =) ei;i (9.198)
4.k
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9.C Angular momentum in Classical and Quantum Mechanics

with the position operator being a multiplicative operator (since when we
find a potential that is a function of a position we get a multiplicative
operator from it)

z;U(t,x) = x;¥(t, x) (9.199)

and as usual
ﬁk\I/(t, X) = —ihak\I/(t, X) (9.200)

The computation showing that eq. (9.197) actually derives from eq. (9.198)
is quite lenghty and left for appendix 9.D.

Physical meaning of self-adjoint operators in Quantum Mechanics

In Quantum Mechanics, normalised vectors in a space provided with a scalar
product represent physical states, and self-adjoint operators represent phys-
ical observables. Given a state |¥) and an operator A,

(U]A[¥) = (A)w (9.201)

gives the expectation value of A in the state U, i.e. the average value
assumed by the observable in that state (average over a large number of
experiments). If U is an eigenvector of A, e.g., if we consider the Hamiltonian
observable H and one of its eigenvectors ¢ g, we have

(H)yy, = Wp|HYE) = E(plvr) = E (9.202)

Figenvectors are states in which the obsevable assumes a fixed value, i.e.
repeating the experiment we get always the same result and (using again H
as an example)

(AHY = (sl B2s) — ((plHlr)) = B~ B> =0 (9.203)

In general, since the eigenvectors of a self-adjoint operator form a basis, we
have (using again H as an example)

©) =) cilvr,) (9.204)

)

where the ¢; are complex numbers. The postulates of Quantum Mechanics
tell us that single experiments will find on of the E; values with probability
|c;|?, and the variation will be non zero

(AH)*>0 (9.205)
For the operator L? we know (eq. 7.72 and eq. 9.197) that

LY} = 11+ 1)R? (9.206)
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This means that the spherical harmonics are the eigenvectors of L2 (states
with a fixed angular momentum magnitude), and that angular momentum
may assume only quantised values

L* =1+ 1)r? (9.207)

9.C.4 Commutators in Quantum Mechanics
Physical meaning

In section 6.3.6 we have defined the commutator
[A,B] = AB — BA (9.208)

and we have discussed how self-adjoint operators admit a common basis of
eigenvectors only if they commute

[A,B] =0 (9.209)

It is indeed clear that if ¥ is an eigenvector of a and B, let us say with
eigenvalues a and b, at least we have

AB|U) = bA|T) = ba|T) = bA|T) = BA|D) (9.210)

This means that if
(W[[A, B]| W) £0 (9.211)

Then ¥ may not be an eigenvector of both operators. Physically, this means
that it is impossible to have a determined value of both observables in the
physical state corresponding to W.

The [z, p] commutator

The most important commuting relation in Quantum Physics is the one
between the position operator &, related to the physical observable of mea-
suring the position of a particle, and the momentum operator p, related to
the physical observable of measuring the momentum of a particle.
Let us compute
£ (9.212)

by having the resulting operator act on an arbitrary function of z,

2, peltp(2) = —ih (20t — Or (2¢h(2))) =

‘ , (9.213)
— ih (20:(x) — 20:1(x) — (x)) = ih(x)
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so that
(%, py] = iR1 (9.214)

This tells us that is impossible to find a physical state in which both position
and velocity are exactly defined (eigenvectors), or, equivalentely that it is
impossible to measure at the same time the position and momentum of a
particle. This is, fundamentally, the content of the celebrated Uncertainity
principle due to Heisenberg (which is studied in more detain in appendix
9.E.

Obviously we have

[#,9] =2y —yzr =2y —xy =0 (9.215)

and
[2,py] = —ih (20, — Oyx) = (20 — x0y) = 0 (9.216)
[Pes Dy) = —ih (0,05 — 0y0y) = 0 (9.217)

since derivatives commute, so that

From a physical point of view, this means that different component of po-
sition, momentum, or component of position and momentum in different
directions may be measured with arbitrary precision at the same (i.e. we
may find common eigenstates of these observables). The uncertainity prin-
ciple only applies to position and momentum in the same direction.

Are the operators that we are considering self-adjoint?

Using the commuting properties of & and p we may now show that if these
two operators are self-adjoint, then also all the components of L are self-
adjoint. Indeed,

T

Lt = D cigrdipn | =D cijn (@5pr) =
n "y (9.219)

oot o P
Y i) =Y cijubrdj = Y cijndin = Li
gk ok ok

where we have used the fact that for ¢; ;. to be non-zero we need j # k and
thus [@j,ﬁk] =0.

We still have to show that the position and momentum operators are
self-adjoint. Establishing if an operator is self-adjoint is often a non-trivial
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problem in functional analysis, one of the main issues being to show that the
domain of the adjoint operator is the same as the original one. We ignore
here the subtle problems and show that

(0.6) = [ 0@y oa)ds = (i0.9) (9.220)
and
0.520) = b [ W) 0.0(a) = b [ (i) o0) =
~ [ 0r (civ()o@) do -+ h [ (0.0()) bl)do =

T ey + 1 [ (220 ) = [ (1015(2)" D) = ()
(9.221)

where we have assumed that the boundary contributions are equal to zero.

Properties of commutators

What are the commuting properties of the angular momentum L? In order
to obtain them, we will need to compute expressions like

(Lo, Ly) = [9ps — 2Dy, 22 — 2] (9.222)

It is thus useful to learn some formulae that may facilitate these computa-
tions, as for example the formula for a commutator with a sum

[A+ B,C|=[A,C|+ [B,C] (9.223)
(A+B)C—-C(A+B)=AC—-CA+BC-CB (9.224)
Obviously we have
[A, B] = —[B, A] (9.225)
so that
[C,A+ B]=—([A,C]+ [B,C]) =[C, A] + [C, B] (9.226)

These equations show that if B commutes with C, it may be ignored
[A+ B,C| =[A,C] if [B,C] =0 (9.227)
We also have that if «a is a number,

alA, B] = [aA, B] = [A, aB] (9.228)
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since

[@A, B] = aAB — aBA

Finally we have
[AB,C| = A[B,C|+ [A,C]|B

since

ABC — CAB = ABC — ACB+ ACB - CAB

From this we obtain
[C,AB] = —[AB,C] = A|C,B| + [C, A]|B
We also see that we have
[AB,C] =[A,C]|B if [B,C] =0
[AB,C] = A[B, C] if [A,C]=0

Commutators between components of L

Let us use these properties to compute

(9.229)

(9.230)

(9.231)

(9.232)

(9.233)

(9.234)

[f/acv f/y] = [gﬁz - 2?]51” éﬁw - ﬁ?ﬁz] = [Zjﬁz - éﬁya éﬁm] - [Qﬁz - éﬁyy i’ﬁz]

[Qﬁza 2ﬁx] - [2ﬁy7 éﬁx] - [yﬁz,:ﬁﬁz] + [2ﬁy73§]52]

Further applying the rules, we see that
[Qﬁz, éﬁm] = 17[]5;;, 225:1:] = :’)[ﬁm é]ﬁm = —Zhﬂﬁm
since ¢ commutes with Zp, by commuting with both operators

A AA

[0, 2D2] = [9, 2]p = 0
and so on. Similarly, you may see that
[£Dy, 2D2] = 0 = [2py, 2p2], 2Dy, D2] = &py[2, P2 = ihip,
and finally
(L, Ly) = il (&py + 0bs)
Working case by case, we may show

A A

[Lj, Lk] = ’L'EZVij[A/l

(9.235)

(9.236)

(9.237)

(9.238)

(9.239)

(9.240)
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With some formal manipulation, anyway, we may prove the above formula
directly. We need the expression

Y cigiEitm = 0510k m = 0jmOk, (9.241)
%

Indeed assume j = [ and k = m, with j # k. On the right side we get 1,
and on the left we get (since we cannot have repetions in the ¢ indexes)

€ijkEigk With i 7 j, i # k (9.242)

which is either 12 or (—1)2. If j = m and k = [, again with j # k, on the
right side we have -1 and on the left

€ijkCiky With i 7 j, 1 # k (9.243)
which is necessarily -1 due to the k, j inversion. If we have j = k we have

Z €ij,j€itm = 0 =05105m — djm0ji (9.244)
i

Finally, if j # 1 # k, (and j # k, since for j = k we already shown that we
get a zero)

05,10j,m — 0j;mOk,y = 0 (9.245)

but also

> cijweitm =0 (9.246)

since it is impossible to find ¢ such that i # j, i # k, i # [ in order to avoid
repetitions in the indexes. The same applies if we replace [ with m. In this
way we show that eq. (9.241) applies.

Once we got this useful expression, we may show, applying multiple times
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the commutator properies, that

L, Li) = | ) eium®ibms Y ehmaginda| = > €jtmEknglEibm, Enby) =
lm n,q

l7m7n7q

Z €5,l,mEkmn,q (jjl [ﬁm’ jznﬁq] + [jlv inﬁq]ﬁm) =1h Z €5 l,mEkmn,q (_ilén,mﬁq + indl,qﬁm) -

l,m,n,q l,m,n,q

ih | =D ejimekmag®iPg+ Y €jimEkniEnbm | =

l,m,q l,mn

ih —g Em,j1Em,q,kL1Pg + E El,m,jELknTnDPm | =

l,m,q I,m,n

ih | — Z 6j,q5l,k«%lﬁq + Z 5j,k5l,qaelﬁq + Z 5m,k5j,n«%nﬁm - Z 6m,n5j,k§3nﬁm

lq lq m,n m,n

(9.247)

Now, the sum of the second and fourth term is zero, as can be seen just by
changing the names of the dummy indexes in the latter (m — ¢, n — 1)

> 85 k01qtiPg — Y Smmikdnbm = 0jk01gEi1Pg — Y 0qud;kiipg =
lq m,n lq !

> 0 k0gibg — D 8jk01qtipg = 0
l,q l,q
(9.248)

Now we obtain, from the remaining terms, changing again m — ¢, n — [ in
the latter, and recalling that sums and deltas do not depend on the index
order, and using once again eq. (9.241) in the right-left direction

[Lj, L) = ih | = 0j401kiibg + > Smkbjmnm | = ih | =D 8j.q0ukdibg + Y 6qk05181Pg

lvq m,n lzq qzl

ih | = ia0uk+ Y 6qnk00 | #1pg = ih > (8qx015 — 0q01k) E1Pg =
g q,l q;l

ih Er,q,zfr,k,ﬂ?lﬁqziHE Er E €r,q,1%1Pq ZiﬁE Er ki L
l r q,l r

r7q7

(9.249)

i.e. eq. (9.240).
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We can also obtain, much more easily

[L]7 Zej,l,mxlpmaxk - Zej,l,m«%l[ﬁmw%k] -
L L (9.250)

—ih E 5j,l,m=@l(5m,k = —ih E 6]"17]6331 =1ih E 5j,k,li'l
lm l l

and

A

Ly br) = | D eiimibm br| = Y €j0.mE1, Prlpm =
Lo Lm (9.251)
ZhZ%lum@ k= thgj kmpm

lm

We may see that the commutators of L with the same ﬁ, p and Z all satisfy
the rule
(L, Ay = zhzg] ki A (9.252)

Using Group Theory, it may be shown that this is due to the fact that all
these operators are vectors, and rotate as vectors under the L, which are
the generators of rotations. We may also notice that different components
of L do not commute between themselves, since rotations do not commute.
These properties of Quantum Mechanics go anyway beyond the space that
we have in this course.

It is nevertheless important to remember that a scalar, such as for exam-
ple the (square of) the magnitude of L, is left unchanged under rotations,
and thus we expect L? to commute with all i}j. Indeed,

L, 1% = J’ZLQ ZLj,ﬁkzk]zz(mj,ﬁk]ﬁﬁﬁk@j,ﬁk]):

k

ih Z 5j,k,lj—/li/k -+ Z Ej,k:,lf/k:f/l
k.l k.l
(9.253)

Let us now switch the names of the k£ and [ indexes in the last sum, and
then use the asymmetry of

[Lj, L2] =...=1h Z EjJMIA/llA/k + Zgj,hkﬁlﬁk =ih Z Ej,k,li/li/k — Zgj,k,lﬁlﬁk =0
il Tl Tl Tl
(9.254)
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If you are baffled by formal computatios, you may always deal with explicit
ones such as

(Lo B2 4 £2 4 12 = (00 22) 4 £ £2) = Lllos Ll + [y Bl + BylLo By) + [Es )y =
ih(LyLy + LyLy — LyLy — LyLy) = 0
(9.255)
The operator L% is self-adjoint, since
(L3 = (L;L)t = LILT = LiL; = L? (9.256)
and
(L' =@+ L+ L) =L+ L+ L2 =17 (9.257)
9.C.5 The operators IA/+, L_and their properties
Let us now define
Li=1L,+il,  L_=L,—ilL, (9.258)

We have

Lo y] = [Lo) Lol +ilLs, L) = ik (53,172@ + 2'53,2,@) = ihLy+hi, =KL,
(9.259)

and

[ﬁz, L_] == [i}z,i}x]—z[ﬁz, f/y] =1h (53,172% — Z‘€3’271[A/Z> = ihﬁy—hzx = —hf/_
(9.260)
and

9.261)

These operators are clearly not self-adjoint
(L)' =Ly +iLy) =L, —iL,=L_ (9.262)
(L)'= (L, —iLy) = Ly +ilL, = Ly (9.263)

A useful relation is the following
LyL_+L_ L, =212+2L2+iLyLy—iLyLy—iLyL,+il L, =2(L2+2L2)
(9.264)

from which we obtain

. 1/. . .. .
2= (L+L_ + L_L+) +i2 (9.265)
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Using the commuting properties of L1 we can re-write this as

~ 1/~ - A A A A A A o
2= (L+L, YL L — Lol + L,L+) -
L, o - - (9.266)
. <2L+L_ L, L+}> v i2=1 0 —hl.+ 12
or
A 1/~ - A A A A ~
2= (L+L, YL by —L b +1 L+> Iy -
) (9.267)
= (QL,L+ V(L L))+ L2 =1 L, +hl,+ L2
9.C.6 Eigenvectors and eigenvalues of L
In appendix 9.D we are going to show that
L, = —ihd, (9.268)

Considering that for each function we have f(p) = f(¢ + 27), the eigenvec-
tors of this operator are

Im) = €™ L.lm) = hlm), m € (0,IN) (9.269)

We choose the normalization so that (section 2.8.3)
(nlm) = dnm (9.270)

Since

L2, L] # 0 # (L2, Ly (9.271)

the eigenvectors |m) are not in general eigenvectors of L, and ﬁy, so that a
physical state with a well defined value of L in the z direction has not a well
defined value of L, and f/y, i.e. any attempt to measure these observables
will give a result with a finite variance, different repetitions of the experiment
under the same conditions giving a spread of values'.

Let us now remember that L? and L, are commuting self adjoint op-
erators (eq. 9.254), so that they admit a common basis of orthonormal
eiegnvectors (eq. 6.106). Let us call these vectors |a, m)

L?|a,m) = ala, m) L.|a,m) = m|a,m) (9.272)

MThe state |0) is an exception, being an eigenvector of all L components. The L
components may commute when acting on some vector, a situation different from the one
we have for the [Z,p] = ihl commutator. See also the discussion in appendix 9.E.
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We already know (eq. 9.269) that m € (0,IN). It is trivial to show that
a>0

a=(a,m|L?|a,m) = (a,m|Li|a,m) =Y (a,m|Li||Lila,m) => || Lila, m)[|* > 0
(9.273)

We can even show someting more,since
a = {a,m|L2|a,m) = | Lola,m)|? + |Lyla,m)|> + || Lsla,m) | (9.274)

but since L.|a, m) = hla, m)

(a,m|L.||L.|a,m) = B>m?(a, m|a,m) = K>m? (9.275)
and thus
a = | Lzla,m)||® + || Lyla,m)||? + h*m?* > h>m? (9.276)
or
va > hjm| (9.277)

As shown above, we have also
L., Ls] #0 (9.278)

but the action of these operators on the |a,m) eigenvectors is extremely
simple (and that is the reason we introduced them). Indeed we have

L.ii|a,m) = (ﬁzm N i@z) la,m) = ([iz, L]+ £+£Z) la, m)

(hﬁ+ + mhﬁ.,.) la,m) = h(m+1) (ﬁ+|a,m))
(9.279)

This means than when acting on ﬁ+|a, m), L. multiplies it by h(m+1), i.e.
L |a,m) is an eiegnvector of L,

Ly|a,m) o< |m +1) (9.280)
But it has also to be an eigenvector of L2 with eigenvalue a since [f/Q, Ji+] =0
L?L |a,m) = Liala,m) = aL|a, m) (9.281)

and thus
Ly|a,m) o |a,m + 1) (9.282)
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Similarly

so that
L_|m) o |a,m —1) (9.284)

If we now consider m such that im > —y/a and n € IN, with in > /a
we get
L"|a,m) = |a,m + n) (9.285)

But since
R (m+4n)? >a (9.286)

we have built an eigenvector whose eigenvalue is larger than f/a in con-
traddiction with what stated above. How is this possible?
We know that

L.(Lyla,m) = h(m +1)L|a, m) (9.287)
This actually implies that
Lyla,m) o |a,m +1) (9.288)

unless
Lyla,m) =0 (9.289)

Thus, to avoid the contraddiction, there must be a mpyrax such that
Lyla, myax) =0 (9.290)

We may choose instead m < /a as our starting vector and n € IN, with
hin > \/a to obtain

L™ |a,m) = |a,m — n) (9.291)

Again, since
h?(m —n)? > a (9.292)

there must be also a mpn such that

L_|a,myx) =0 (9.293)
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We now see that (refer to eq. 9.267)

a = (a, myax|L?|a, myax) = (a,myax|L_Ly + hl, + L?|a, myax) =
0+ hzmMAX + h2m12\/IAX
(9.204)

or

a = mMAX(mMAX + 1) (9.295)
Similarly (refer to eq. 9.266)
a = (a,myax|L?|a, main) = (a, mans| Ly L — hL, + L2|a, myy) =

0 — IPmaiN + P2miny
(9.296)

or
a = hzmM[N(mM[N — 1) (9.297)

To find the relation between myax and myn we solve

?—zr=yty=t -y =aty=(r+y)(z—y) =x+y (9.298)

The solution

r—y=1l=z=y+1 (9.299)
cannot be accepted (the minimum would be higher than the maximum) thus
we have

r+y= 0 = mMIN = —TMMAX (9300)
Let us call
mMax =1 € (0, ]N) (9.301)

since all the m are integers. We now have
a=RI0l+1),m=—,—1+1,...,1—1,1 (9.302)

But these are exactly the eigenvalues admitted by the spherical harmonics,
a result that we had previously presented without proof.

We may thus identify
11+ 1),m) = Yim (0, ©) (9.303)
In general, these eiegnvectors are identified simply as

l,m) = Yim(0,¢) (9.304)
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A spherical harmonic corresponds thus to a physical state in which the
angular momentum assumes magnitude L? = h2[(I+1) while its z component
has value L, = im
We know that
|1,0) < P;(cosf) (9.305)

we may then use the operators L (see appendix 9.D for their explicit form)
to build

L™1,0) o |l,n),  L™[1,0)  |I, —n) (9.306)

Nevertheless, if we want orthonormality
{m|l'sm") = 01 m,me (9.307)

we need also to compute the proportionality constant. We may do it as
follows

B2 +1) = (I, m|L*1,m) = (I,m|L_Ly|l,m) + h*(m +m?) =

ll
=20+ —mm+1) =Y > (m|L [, m/){I',m|Ly|l,m)
' m=-=U

(9.308)

In the last step we used the fact that the common eigenvectors of L? and
L. are a basis'®, so that (eq. 6.140)

l/
SO m){m | =1 (9.309)
" m=-=l
a very common technique in Quantum Mechanics. But since
Ly|l,m) o< |l,m+1), L_|l,m)o|l,m—1) (9.310)

and
{@m|l',m') = 01 m,me (9.311)

the only surviving therm of the form
(I,m|L_|l',m') (9.312)

is

(L,m|L_|l,m+1) (9.313)

5For functions defined on a sphere of given radius, the sperical harmonics basis.
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and the only surviving therm of the form
(', m!|Ly|l,m) (9.314)
is A
(I,m + 1|Ly|l,m) (9.315)
We have thus

R2(1(1+1) —m(m+ 1)) = (,m|L_|l,m + 1){l,m + 1| L |l,m) =

) ) ) , (9.316)
<l7m’L+Hl7m + 1><l7m + 1|L+|l7m> = H<lam + 1|L+|l7m>H

where we used LT = L, and (a|b) = ((b|a))*. Now we know that we have a
proportinality law

Lo|l,m) =al|l,m+1) (9.317)
so that
1 m 4+ 1L |l m) [P = (af)? (9.318)
and we finally find that
o, =PIl + 1) —m(m + 1) (9.319)

The complex phase e is an arbitrary convention and may be fixed to 1.
We see that since

Ly|l,m) = Vil +1) —m(m+1)|l,m+1) (9.320)
we have as wanted
Li|l,Iy=0 (9.321)

In a similar way, we have

R +1) = (I, m|L2l,m) = (I, m|LyL_|l,m) + h*(—m +m?) =

p
= 20+ 1) —m(m—1)) =Y > {Lm[Ly[l!,m){I,m/|L_|l,m) =

U m==U
<lam|j’+|lvm - 1><lam - 1|f’*|lam> = <l7m|f’*||lam + 1><l7m - 1|f4+|lvm> =
48,7 = 1Ly |1 m) |

(9.322)
From
L_|l,m) = o |l,m—1) (9.323)
we get
of = ePhrI(1+1) —m(m —1) (9.324)
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Fixing again the phase to one we obtain

L_|l,m) =1(l+1)—m(m—1)|l,m —1)

If we act on |l, —[) we have

Lo|l, =) =1l+1) = (=)(=l=1)|I,-1—=1)=0

(9.325)

(9.326)

9.D Explicit form of L? in spherical coordinates

Derifing eq. (9.197) is not conceptually difficult but a little lenghty.

9.D.1 Change of coordinate

Let us start by writing down the change of coordinates laws

From spherical to Cartesian

z =rcost

x = rsinf cos ¢

y =rsinfsinp

From Cartesian to spherical

These ones are a little bit more annoying

z
cosﬁ-éﬁ-acos(
r

r=+z2+y%+22

Y

tanp = - = p = atan;

9.D.2 Partial derivatives

Useful formulae

Let us first recall the derivatives of acos

and atan

—acosw =
dx

—atanw =

dx

1+ w?

z

Yy

Va4 y? +z2>

(9.327)
(9.328)
(9.329)

(9.330)
(9.331)

(9.332)

(9.333)

(9.334)
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Derivatives of 0

We have
%—;zﬁ 1 —_712 ;1 2<‘/x2+ 2+Z2)_
oxr 2 dx \r) 22 r2 ) Ox 4 N
1-% 1- 2
1 p 1\ 12z zZx _TQCosﬁsiHGCosap_cosHsianoscp
1— 2 r2)2r  1—cos20r3  V1—cos20r3 sinfr
(9.335)
So that 0
9,0 = 57 B8 (9.336)

r
Proceeding similarly, although not writing passages very similar to those
performed above, we have

2 . .
90 _ ‘zy _r cost? s1n? sin @ (9.337)
dy  sinfr3 sin 6 r3
So that 05
0,0 = 2T P (9.338)
r
Finally
0 —1 1 zor\y -1 1 22 B
0z 2 \r 120z 2 \r 73
T2 T2
—1 7r? =22 —1 22 —1 5 —1
= 1-5 ) =——(1—cos’0) = in” ¢
sinf 13 r sin @ ( 7“2) r sin @ (1= cos®0) rsing o
(9.339)
so that 0
Y —— (9.340)
r
Derivatives of r
These are the easiest ones
gzl 2x :gzrsinﬁcoscp (9.341)
&x 2 x2 + y2 + 22 r T
so that
O,r =siné cos ¢ (9.342)
Similarly
ﬁ_l 2y y:rsine sin (9.343)

dy 2 tyrt2 T r
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so that
Oyr = sinf sin (9.344)
and
or 1 2z 2z rcost (9.345)
82_21/x2+y2+22_7“_ T ’
so that
0,r = cosf (9.346)
Derivatives of ¢
Trivially,
0.0=0 (9.347)
Then
dp 1 -y z? -y _ —y _ rsinfsing (9.348)
8x_1+%x2_a:2+y2x2_x2+y2_ r2 sin? 0 '
so that .
—sing
0,0 = 9.349
s r sin 6 ( )
and
dp 1 1 2?1 _x  rsinfcosp (9.350)
oy 1+Lx 22+y’x 2®+y? r2sin?0 .
X
so that
Cos
Oyp = 9.351
yP r sin 6 ( )

9.D.3 Components of L
Explicit form of L,

We have
L, = —ih(28, — yd,) =
—ih (r sin @ cos (gzag + g;j&p + g;ar> —r sinf sinp ((‘3269 + g—i(% + (‘2;7;&)) =

COS

0 si
—ih(rsin@Cosgowag—i—rsinﬁcoscp ,Soeap—l—rsinecosgosin@sinapaﬁ—
r 7 sin
0 .
—rsinf sinwwﬁg—i—r sin 0 singoSIL@de—r sin @ sin ¢ sin ¢ cosg087«> =
r 7 sin

— ih(sin@ cos @ cos 0 sin ¢ Jy + cos> @0, + 1 sinf cos psin 6 sin p 0.+

— sinf sin g cos 6 cos p dp + sin’ O, — 7 sin 6 sin g sin 6 cos 8T> = —ih (Cos2 © + sin? <p) Oy
(9.352)
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so that
L, = —ihd, (9.353)
Explicit form of L,
We have
L, = —ihi(yd, — 20y) =

—ih (7" sin 6 sin ¢ <g§89 + %ﬁ@w + g;oar> —1r cosf <gz@e + (ZZ(?@ + g;&)) =

in 6
— ih( — 7 sinf sintpﬂ Oy + r sinf siny cosh O+
r

cos @ sin ¢ COS
——— Op —r cos) ———
r rsin

—1r cosf 0, — 1 cost sinﬁsin«p(?r):

— ih( —sin% 6 sin p dp + 7 sin 6 sin @ cos 6 I,

cos 0 cos

— cos? fsin p Oy — O0p — 1 cost) sind singo&):

sin 0
— ih (—sin @0y — cotand cos ©0,,)
(9.354)

so that
L, = ik (sin 8y + cotand cos ©0,) (9.355)

Explicit form of f,y
We have

Ly = —ih (20, — 29,) =

. 00 Op or . 00 Op or B
—ih (r cos (8;1:89 + %&p + afg@) — r sinf cos ¢ (azag + 589 + 828,,>> =

_, Sy Oy + r cosB sin b cos 0.+
sinfr

0
— ih(r cos 927 Y Oy + 1 cosf
r

in 0
+ r sinf cosgpsm Oy — r sinf cos p 00598T> =
0 i
— ih(cos2 0 cos g — w&, + rcosf sin 6 cos o,
sin

+sin? 0 cos dy — rcos b sinf cos <p(“)r> =

— ih (cos p0dp — cotl sinp d,,)
(9.356)

so that
L, = ih (cotf sin o 0, — cos p0p) (9.357)
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Explicit form of L2
We first write down

L2 = —n? (sin2 © 03 + cot? f cos? 83, + sin ¢ cos ¢ Jy (cotd d,5) + coth cos ¢ d,, (sin g Jy))
(9.358)
and

ﬁ; = —h? (COS2 007 + cot? fsin® o 8?0 — sin ¢ cos ¢ Jy (cotd 9,,) — coth sin d, (cos ¢ Jy))
(9.359)
Their sum gives
L2+ ﬁz = —h? (53 + cot29(‘9§, + coté cos ¢ D, (sinp dg) — coth sin @ d,, (cos ¢ Ip)) =
— K2 (83 + cot?6 83, + coth cos? ¢ Oy + cotd sin® ¢ Jy + cot cos ¢ sin @ 0, 0p — cotf cos g sin ¢ g (9@) =
— 1? (07 + cot®0 92 + cotf Jy)

(9.360)
And summing ﬁg we get
J—— ((93 + (cot29 +1) 837 + cot dy) (9.361)
now, since
cos? 6 1
t20 + 1 = = — 9.362
coro sin? 6§ sin? ( )
we have
. 1
L? = —n? (83 + cotl 9y + ,20?0) (9.363)
sin” 0
Finally, we see that
1
Dp (sin B0y) = sin 093 + cos 00y = 500 (510 00y) = OF + coth Dy (9.364)
and thus
L? = —p? iag (sin 00p) + L (9.365)
sin 6 sin?f % '

9.E Mathematical formulation of the uncertainty
principle
9.E.1 Expectation values

Let us consider a physical state

T) = cilas) (9.366)

i
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The ¢; are complex numbers

GeC, D laf=1 (9.367)

and the |a;) are orthonormal
<aj\ai) = (5]‘71' (9.368)

so that
(U|0) = " ciejlaglas) = Z lei|? = (9.369)
iJ
this state is the superposition of states |a;) on which the observable A (for
example, a component of the angular momentum) assumes value a; € R.
The a; all the possible values assumed by A 6. This means that when we
perform an experiment to measure A, the result will always be one of the a;.
If the physical state is |a;), each experiment will always give a; as a result,
and this is indeed the physical definition of |a;). In the case of the state | V),
an experiment is going to give the result a; with probability p; = |¢;|> '7.
This means that if we perform N experiments, we expect (for large N) fo
have the result a; for n; times, with
= ;2N = |eif? = ”N = pi (9.370)
In the general case then the value of A is not fixed. What is uniquely
determined is its average value, or expectation value

n;a;
(Ayg = Z |cil?a; = Z = szal eR (9.371)
i
i.e. a weighted average in which each result its weighted with its probability
pi = |ci|?. The expectation value is clearly linear, i.e. if on the same state

(and thus with the same probability p;) the observable B assumes value b;,
we have

<A+BB>\I/:Zpi(ai+/Bb szaz—FﬁZplb— Vo +B8(B)y (9.372)

Clearly, the expectation value of a constant is the constant itself

a)y = Zpia =« (9.373)

They may be continuous, although we will assume for simplicity them to be discrete.
And indeed, the existence of discrete values for physical observables is one of the features
of Quantum Mechanics, as we have seen for the angular momentum and energy.

17 A large number of experimental results has led physicists to build this formulation of
the laws of nature.
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It is also important to know what is the spread of A around its average
value (A). This may be done by measuring

AA% = (A% — (A% (9.374)
or, equivalently (using the properties of expectation values)

(A={4)w)*)w = (A H(A)F —24(A)9)w = (A%)u+(A)F—2(A)u(4)y = A4

(9.375)
Since (A — (A)y)? > 0, and obviously all probabilities are p; > Owe have
AA%Z >0, with AAZ =0 only if A= (A)y, i.e. if |[¥) = |a;).

Until now, we have talked about A as a physical observable, i.e. without
any reference to self-adjoint operators. But we assumed that we may write
any state as a combination of states in which A asssumes a fixed value. We
may thus assume the |a;) to be the eiegnvectors of the self adjoint operator
fl, that is the mathematical representation of the physical observable A 8.
We have thus

Ala;) = agla;) (9.376)
or, (eq. 6.151)
A="aila;){a;] (9.377)
7

We can see that

(W] A|w) = ZCM\AI ZCJG’] =Y ialAlYcjag) =Y cfejazlaag) =
i J 1,]
ZC ¢jajoij = Z‘Cz, ai =

(9.378)

explaining why we have considered these expressions as equivalent of average
values of observables.
We may define the following operator (clearly self-adjoit, since (A)y is
just a real number)
ANAy = A— (A)y (9.379)

We have

|AAG P2 = (U|AAG || AAG ) = (U|(AAy)? V) =

(|A2 + (A)% — 2A(A) g |0) = AAS (9-380)

18We use the expression A just here to make a distinction between observable and
operator and clarify some aspects.
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Uncertainty principle

Now that we have clarified the physical and mathematical meaning of the
spread AA?I,, we may show the relation (uncertainty principle)

AAGABE > <|([A, B))u|® (9.381)

1
n
that relates the spreads of operators A and B on the state |¥) to the expec-
tation value on W of their commutator.

To show it we need the Schwartz inequality, which is explicitely demon-
stated below, but that states the quite intuitive result that the magnitute
of a scalar product is smaller than the product of the magnitude of the two
vectors

[{@lB)|* < (ala)(8]B) (9.382)

Assuming this to be true we have

AAFABY = (V|AAy||AAy| ) (¥|ABy||ABy V) >

S A (9.383)
(U|AAg||ABy|P)* = [(¥|AAgABy|V)[?

where we used (AAy)t = AAy. Now we notice that for each two operators
C and D we have

Ch = % (€D~ DC+CD+ D) = % (1.0 +1C.DY) (9380

where we have defined the anticommutator
{C,D}=CD + DC (9.385)

Substituting in eq. (9.383) (replacing the operators C' and D with AAy and
ABy) we get

AAYAB, > S [(U[[AAy, ABy] + {AAy, ABy}W)[* =

o
. ) ‘f S (9.386)
1[(VI[AAy, ABy]|¥) + (U{AAy, ABy}|T)?
Now, since
A A ~ A ~ ~\T A~ ~ A A~ A

(6, DV = (CD + Dc> = DC+CD = {0, D) (9.387)

we have
(U[{AAy, ABy}T) = (V[{AAy, ABy}||¥) = ((V[{AAy, ABy}|T))*
=(U|{AAy, ABg}¥) € R

(9.388)
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On the other hand
€D} = (€D~ D) = DE— ¢D = ~[C. D) (9.389)
we have
(U|[AAy, ABy)|¥) = —(U|[AAy, ABy]||¥) = —((¥|[AAy, ABy]|¥))"

|
= (U|[AAy, ABg||¥) € T
(9.390)

But if « € R and g € I we have
la+ 8P = (a—pB)(a+ ) =a® - 2 =a® + | (9-391)
so that eq. (9.386) becomes

1 A A 1 N N 1 A A
AALABY = (9|8 Ay, ABy||9)? + {(WH{A Ay, AB ) > (W] Ag, ABy|9)

(9.392)
But
(KAg, ABy] = (A= (A)0)(B — (B)o) — (B~ (B)w)(A— (A)e) = AB—BA
(9.393)

since (A)y and (B)y are just numbers and commute with everything, so
that

AAGABY > {|(W][A, Bw)P (9.394)

9.E.2 Schwartz inequality

This inequality is very easy to show. We obviously know that

(), v (9.395)
let us pick o)
oy (Bl

so that (using (8|a)* = (a|B))

(al) (Bla) (l8) (8la) Bl
< (yhy) = << w@w) )~ Z218) = tale) - {5 510} - 1ol + L1615 -
oy = SO o B o 1Bl (Bl
a 2
= (ala) > ‘<fﬁ'| 5@‘ = (ala)(818) > |(Bl)P
(9.397)

which proves the inequality.
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9.E.3 Physical meaning
Position and momentum

For the & and p operators we have, for example

2_ N

1 o
Ak ARy = LIV, )W) = ]

(9.398)

on all states, since the commutator is a multiple of the identity. What
happens if we have an eigenstate of p with Api\l, = 07 How can the relation
be satisfied?” We now that such an eigenstate is in the form

U(z) = Ae'P” (9.399)
so that the probability (refer to eq. 3.62) of finding the particle in x is
| W (z)|? = |A|? = const (9.400)

The particle is everywhere with the same probability and thus its spread in
position is infinite! Actually the physical sense of this mathematical result
is that it is impossible to build a physical state with a perfectly defined p
or x. All physical states will have a spread in position and moment, their
product satisfying eq. (9.398). The more we try to localise the particle in
space, the less we will know its momentum, and viceversal!

Angular momentum

States such as |m) in which one component of the angular momentum as-
sumes a defined value do exist. If then on these states we have AL§|m> =0
how can we satisfy

1 PO h .
ALy ALy = [ m Lz, Lyllm)[* = 2 [(m] Ly [m)|* (9.401)

z|m) z|m
The solution is easy. We know that
L,=— (£+ - £_> - %Z <£$ tily — Lo+ i£y> (9.402)

so that the action of L, on |m) creates a combination of |m +1) and |[m — 1)
(but no |m)) that have 0 scalar product with (m|, so that

(m|Ly|m) =0 (9.403)
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