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Abstract

We study the evolutionary dynamics of a mobility
system in which agents are able to explore the environ-
ment and to communicate between them in order to
increase the efficiency of the system, i.e. to minimize
the average time needed to reach their goal, choosing
the quickest path and avoiding the formation of traffic
jams. The agents use an evolvable pheromone-like in-
direct communication system, of which we also give an
interpretation as the average of different kinds of direct
communication.
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1 Introduction

A town is a complex system in constant evolution.
Both the environment (the structure of the town, its di-
mensions, the road and public transportation system,
the location of the places of interest) and the behaviour
of the inhabitants are constantly changing, and influ-
encing each other. Focusing only on the mobility sys-
tem, new roads, railways and subway lines are built ac-
cording to the needs of the citizens, but the presence of
these new structures modifies the behaviour and habits
of the citizens, and so on.

In this paper we propose a simple system of agents
whose behaviour is regulated by evolving neural net-
works. These agents move on a 2D manhattan grid
that represents a town’s road system, with the con-
nected traffic problems. The knowledge of the struc-
ture of this road system is obtained through the explo-
ration of the system by the agents, and communicated
to other agents through a “pheromone-like” field.

It is our opinion that the model that we propose can
be a fruitful environment to study the evolutionary dy-
namics of a system of different interacting agents regu-
lated by a simple behavioural mechanism, and eventu-
ally the emergence of some kind of “global behaviour”.
In particular, we are interested in studying the emer-
gence and evolution of an indirect communication sys-
tem. This model could also be useful to get some in-
sight about the evolution of actual mobility and urban
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systems.

It can also be seen as an attempt to understand if
some kind of pheromone-like communication could be
used to improve the efficiency of a real mobility system
and avoid the formation of traffic jams.

2 The model
2.1 The mobility system

The agents are located on the nodes of a manhat-
tan 2D network (“a town”). At each time step they
have a probability p < 1 to perform just one of five
possible actions, i.e. to move to one of the four neigh-
bour sites (at manhattan distance d = 1, where the
distance between the points P; and Ps is defined by
d(Py1,Py) = |z1 — 2| + |y1 — y2|) or to rest on the
site they are located in. We want our town to have
wider roads, in which higher speed is possible, and nar-
rower roads. We also want to have a traffic problem,
i.e. agents should be slowed down when a great num-
ber of them is located in the same site (when we talk
about the agent’s speed, we are actually talking about
its probability p to perform an action). To achieve this
we define, identifying a site with its discrete coordi-
nates (7, j) and the number of agents on that site with
n(,7), the probability to act as

p((i,5),n(i, §)) = wli, )t 5 (n(i, 5)) (1)

where 0 < w(i,j) < 1 is the wideness of the site and
ti,;) is a (eventually) site dependent “traffic jam func-
tion”, which we ask to be (not necessarily strictly) de-
creasing and to have t¢; j)(1) = 1 V(4,7). In particular,
we are going to use t(n) = (1/n)7, with v > 0.

Even if we talk about “wide and narrow road” it is
clear from the definition that the wideness is related to
the site, and not to the roads, since no road is actually
present in this model. We order the wide sites in rows
inside the grid (see figure 1 for the basic structure of
the town) to simulate the presence of a road, but p has
no dependence on the direction of the motion so there
is no difference between an agent that is following a
“road” and an agent that is just crossing it.



Figure 1: Basic structure of the town’s road system.
Thick means wide.

This is a very simple and abstract model that is,
according to our opinion, feasible to study the general
features of the interaction of a group of agents in a
mobility system. Nevertheless in building the model
we were inspired by the actual car traffic systems. A
node in the network represents a crossroad (plus some
portions of the roads leading to it). If a large number
of cars is located in the same crossroad, a traffic jam
occurs. w stands for the maximum speed that the car
can have on that (cross)road, while ¢ is the “tendency”
of the crossroad to the formation of traffic jams.

We can also think of this model as a system of pedes-
trians, in which the wide roads correspond to public
transportation, and t is the waiting time to use it.

2.2 Communication

The way the citizens of a town learn to use its mo-
bility system is obviously quite complicated and differ-
entiated (past experience, communication with other
agents, centralized communication like news from the
radio, etc.). In our model we wanted to introduce
some kind of mechanism that could represent an av-
erage of all these processes, that could be regulated
by the agents themselves and that could be utilized
just through a local observation of the environment (to
avoid a too complex sensory system or the introduction
of memory).

We decided to use pheromone based communication
which has shown to be an efficient way to evolve com-
munities of collaborating agents [1].

We introduce a pheromone field P(i,j), gener-
ated by the same agents which drop an amount ¢ of
pheromone every time that they cannot perform an ac-
tion, i.e. every time that “they have to wait” because
they are located in a narrow road or they are stuck in a
traffic jam. This means that if the indirect communica-
tion system emerges, pheromone should be interpreted
as ‘“repulsive” and used to inform the other agents
about “bad places”. Pheromone evaporates according
to a coefficient ¢, and turns into evaporated pheromone

P.(i,7) that diffuses with coefficient ¢4 [1]. Agents are
able to perceive the gradient of this field, i.e. the differ-
ence with the neighbouring sites P.(i,5) — P.(neigh).

We could interpret this pheromone field as a “ru-
mor” that stands for the “collective knowledge” of the
urban structure, and spreads between agents. Actu-
ally in our model the rumor is spreading on the ur-
ban structure, but we can think that in this model are
present immobile and mobile agents, and the rumor is
spreading between the (not explicitly represented) first
ones. Adopting this point of view, the medium that
mobile agents are using to communicate are the immo-
bile agents.

2.3 The decision mechanism and its evo-
lution

The evolution of neural networks through genetic al-
gorithms has shown to be an efficient way to develop
agents and robots able to move in complex environ-
ments [2].

We use a fully connected neural network with 6 in-
puts (the distance from the goal in 2 and y coordinates
(92 — z) and (gy — y) plus the 4 “pheromone gradi-
ents”), a layer with h hidden neurons and 5 outputs
corresponding to the 5 possible actions. The action
with the highest output value is performed. The con-
nections of the networks are kept fixed during the whole
generation, i.e. there is no learning, just evolution of
connection weights and of the number of the hidden
neurons (h).

We define the fitness function in the following way.
Each agent is created in a randomly selected start-
ing point (sz,sy). If 7 is the time to reach its ran-
domly selected goal point (gs,gy) (a minimum dis-
tance between start and goal is imposed), the ratio
r = (|92 — Sz| + |gy — sy|)/7 is measured. If the agent
does not reach the goal in a maximum time 7', r is set
to zero. The operation is repeated R times and the
average value of the ratio is the agent’s fitness f = 7.

Since we did not know the value of h that could solve
our problem, we used the following evolution strategy,
(inspired by [3, 4]) to optimize also this parameter. We
start using different networks divided in N, species,
according to their structure (i.e. to the value of h),
each one with an equal number of members (in each
experiment we have networks with different structure
and weights interacting and competing at the same
time on the urban structure). Tournament selection
is performed inside a single species for g, generations,
then the dimension (number of agents) of the species is
changed according to its fitness. The size of the tour-
nament is changed according to the species’s new size,
and evolution is performed again for g, generations in-
side the species’s boundary, and so on. Mutation of the
connection weights was performed adding, with prob-
ability p,, = 0.05, a gaussian noise with mean zero .
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Figure 2: Evolution of the average fitness value through
generations in the case of no traffic jams.

3 Experiments

We used 4000 agents and a 50x50 grid, averaging
over R = 20 runs. Wide roads were defined to have
w = W = 1 and narrow ones to have w = N = 0.05.
The values of the pheromone parameters were ¢ = 0.1,
ce = 0.1, ¢4 = 0.1 (we reserve for future works the
task of optimizing these parameters through evolution,
and eventually also of evolving the pheromone drop-
ping mechanism).

3.1 No traffic jams

In a first class of experiments we used v = 0 (i.e.
t(n) =1 Vn) on the whole grid. In this case no traffic
jam can be generated, and the only problem is to find
the quickest path to the goal. We first fixed w(i, j) = N
V(4,j) and checked that we were able to evolve networks
with the maximum possible fitness f = 0.05. Then,
without introducing pheromone, we used a structure of
wide roads according to figure 1. The networks evolved
to f = 0.064 which we assumed to be the maximum
fitness in absence of further information (the fitness
attained by agents going straight to the goal). We will
consider pheromone communication to be successful if
it is able to improve this value.

The agents that dropped pheromone evolved to
reach a fitness roughly 3 times higher (f = 0.202),
i.e., indirect communication had emerged. In this ex-
periment, pheromone communication is used to mark
the narrow roads (wide roads correspond to the min-
ima of the pheromone field). The agents developed an
ability to reach the wide roads following the decreasing
pheromone gradient when they were distant from their
goal, to move on the the minima (follow the wide road)
in order to approximate the goal, and then to leave the
minima (despite the positive pheromone gradient) in
order to reach the goal when they were near to it. The
results of this experiment are shown in figures 2 and 3.
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Figure 3: Evolution of the h species’ size for the same
simulation shown in figure 2. Initially 10 species (corre-
sponding to values of h between 5 and 14) are present,
then h = 9 (green) and h = 14 (red) invade the popu-
lation.

3.2 Traffic jams in a uniform grid

We then fixed w = W on the whole grid and used
v > 0, i.e. the agents did not have to find any “best
path” but just to avoid traffic jams.

Using v = 1 agents going straight to the goal
performed with an average fitness f = 0.292, while
the pheromone dropping agents had an higher fitness
(f =0.377). We tested the performance of these agents
without allowing them to drop pheromone and we un-
expectedly found that their fitness did not change at
all. Actually the genetic algorithm had developed a
network that reached the goal moving always clockwise
(in the specific case). Due to the nature of the man-
hattan metric this allowed them to reach the goal on a
minimal distance path, reducing strongly the probabil-
ity of a collision (through the introduction of a “circu-
lation rule”, i.e. of some kind of collective behaviour,
as clock-wise or counter clock-wise circulation, see fig-
ure 4). The emergence of this rule has no relationship
with communication, since it was based only on the
“distance to the goal” inputs. Actually, for this low
value of v, the circulation rule was enough effective to
avoid the formation of traffic jams, and it prevented
the emergence of communication.

In the case of v = 2 the agents going straight to
the goal without using a circulation rule performed
with f = 0.024, while the pheromone dropping agents
reached a (4 times higher) value of f = 0.098. If
we made them run without pheromone, i.e. without
communication, they performed with f = 0.030. This
value is quite lower than the one they had when we
allowed them to communicate, but higher than the one
attained by agents going straight to the goal. This
shows that both communication and a circulation rule
had emerged.

We tested on this experiment also the pheromone
dropping agents that we had evolved in the previous ex-
periment without traffic jams. Despite the completely
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Figure 4: An agent has to reach point B from A, and
another A from B. Black corresponds to a circulation
rule that avoids collision, while red corresponds to go
straightly to the goal. Notice that the two paths cover
the same distance in manhattan metric.

different nature of this experiment, they were able to
double the fitness of the agents going straight to the
goal (f = 0.051). This happens because the agents,
trained in the first experiment to follow the wide roads
as minima of the pheromone field, result also able to
avoid the traffic jams (maxima of the pheromone field)
in this experiment.

3.3 Complete model

In real mobility systems, the greatest traffic prob-
lems occur when one of the main communication routes
is blocked due to a traffic jam (often caused by a traf-
fic accident). To simulate this problem on our simple
geometry we used the basic structure of figure 1 with
a traffic function that used v = 1.75 for the sites with
w =W and v = 0 where w = N (this can be inter-
preted as a rule that says that accidents, and thus traf-
fic jams, are easier to occur where the speed is high).
In this way we created a dilemma about the use of wide
roads.

In this environment, the agents going straightly to
the goal performed with values that changed strongly
according to different repetitions of the experiment,
but that where always smaller than 0.05 (between 0.035
and 0.048 in the experiments that we have performed).
The crucial point is that these values are lower than
0.05, i.e. the introduction of wide roads on which traf-
fic jams are easy to occur is harmful if they are not
used in a “intelligent” way.

We then tested with these conditions the network
evolved dropping pheromone in absence of traffic jams,
which performed with f = 0.063 (almost the same
value on each test), i.e. it was able to use the wide roads
in a way good enough to improve over the value of 0.05.
Furthermore, if we added to the road system a further
“ring” of wide roads, the fitness of the agents going
straightly to the goal decreased again (0.033-0.037),

while the one of agents using pheromone increased to
0.067.

We finally tried to evolve explicitly a network for
this problem. The maximum reached average fitness
was 0.092, but this fitness dropped to 0.060 when we
tried to extract a “best” uniform population.

4 Conclusions

‘We have shown that simple neural networks are able
to evolve a (pheromone based) indirect communication
system that is effective in solving both the problem of
finding a “good path” and to avoid “traffic jams” in a
simple mobility system.

We have found that a network evolved in a time-
constant environment (no traffic jams) could be effec-
tive also in the other two experiments without further
evolution, showing the effectiveness of the pheromone
communication in both the tasks of avoiding problems
(pheromone maxima) and following good paths (min-
ima). The cases with traffic jams (i.e. the environment
is constantly changing according to the behaviour of
the agents) showed the emergence of global behaviours
(“circulation rules”) and the presence of a not trivial
evolutionary dynamics (the presence of differentiated
neural networks, different in connection weights and
structure, seems to cause an higher value of the fit-
ness), which should be further investigated in future
works.
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