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Abstract – We consider a system of point charges interacting within a cone of vision and confined
by an external potential, as a simple model of individuals provided with vision. The non Newtonian
nature of the interaction introduces dissipative effects which are balanced by a memory mechanism.
The two-body system is amenable to quadrature, whereas the N� 1 body system exhibits crystal-
like and disordered states with a non-trivial phase diagram if the interaction range and memory
persistence are chosen as control parameters.

Copyright c© EPLA, 2007

Introduction. – The interactions based on perception,
as vision, do not obey the third principle of Newtonian
dynamics. In this paper we study the effect that this non
Newtonian behaviour has on the dynamics of a two-body
and a many-body system.
We propose the gas of Von Neumann automata as a

basic model for complex systems formed by a large number
of interacting individuals provided with a sensory system,
such as a crowd or a swarm [1]. With “gas of automata”
we mean a system similar to a gas of charged particles in
a continuous 2D space confined by an external potential,
except for the presence of a perception system, described
by a visual cone of range rv and angular half-aperture α.
An automaton A is repelled by an automaton B when it
falls within its visual cone, and feels no interaction when
B is out of the cone (see fig. 1). Repulsion decreases with
distance and we assume an inverse proportionality as in
the 2D electrostatic case. More explicitly the force is given
by

F=

{ r

r2
, if B ∈CA,

0, if B /∈CA,
(1)

where r= rA− rB is the displacement and r= |r| is the
distance from A to B. The cone condition is defined by

B ∈CA if r < rv and if |θ|<α cos θ=−
r ·v

r v
, (2)

where v is the velocity of A, along which we choose the
axis of the cone (fig. 1).
The model is supposed to describe a “level-zero

approximation” of a low-density crowd in which the
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Fig. 1: Automaton B falls in the cone of vision of automaton
A, which feels repulsive force F, while B does not feel any force
due to the presence of A.

automata (“pedestrians”) tend to avoid each other, even
though in an actual crowd the interactions are certainly
more involved: social attractive forces, responsible of the
formation of small clusters, and more complex behav-
ioural patterns are certainly present in addition to pure
misanthropy. The presence of the visual cone renders
the force non-Newtonian and changes significantly the N
automata problem with respect to the N -body problem,
by introducing a sort of damping (maximised in the α= π

2

case), since the repulsive automaton-to-automaton force
is mainly opposed to the direction of the motion and thus
has negative power.
The model, given the simplicity of both the perception

and decision systems of automata, and also the point-
like nature of our automata, is not to be intended to
be able of describing actual crowd dynamics, but is
just a toy model that allows to investigate, using both
analytical and numerical methods, the non-Newtonian
features introduced by perception.
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More realistic models able to describe traffic flow and
crowd dynamics have been proposed, using descriptions
based on cellular automata [2] and social forces [3], and
also evolutionary methods based on genetic algorithms
and neural networks [4].

The two-automata problem. – The two-automata
problem can be solved by passing to the description of
the relative motion which resembles the dynamics of a
particle moving in a central time-dependent force field (the
mathematical details can be found in [4]). Let us assume
that the automata are subject to an external force field,
for example a harmonic potential. We can write the forces
felt by the automata as

F12 =−ω
2 r1+

r1− r2
r2
12

ϑ(C1), (3)

F21 =−ω
2 r2+

r2− r1
r2
12

ϑ(C2), (4)

where the cone conditions are expressed (assuming for
simplicity’s sake rv =∞) by

C1 = v1 · (r2− r1)− v1 r12 cosα, (5)

C2 = v2 · (r1− r2)− v2 r21 cosα, (6)

and ϑ(u) is the step function

ϑ(u) =

{

0, if u� 0,
1, if u> 0.

(7)

We can then pass to the centre-of-mass (R,V) and
relative-distance (r,v) coordinates, and we obtain three
different Hamiltonian functions for the relative motion,
depending on the relative positions and velocities of the
automata.
The Hamiltonian for the relative motion reads

HI =H ≡
v2

2
+ω2

r2

2
(8)

when none of the automata sees the other one;

HII =H +V (r) V (r)≡− ln(r) (9)

when just one of them sees the other one;

HIII =H +2V (r) (10)

when they see each other. The time dependence of the
potential is not explicit, but depends on the time evolution
of the phase space trajectories of the automata. The
energy is conserved in each zone I, II and III, but not
conserved in the sharp transitions between one zone and
the other. Nevertheless, since the angular momentum for
the relative motion L≡ r×v is conserved, we can limit
ourselves to the study of the radial motion, introducing
an effective potential that changes with time, according
to the cone condition, and the equation of motion can
in principle be integrated, even if the integration is quite
cumbersome due to the cone condition (the equations for
the centre-of-mass motion are not separated to those for
the relative motion, in contrast with the usual case).

Fig. 2: (Colour online) The automaton feels the red potential
when ṙ < 0, the blue one when ṙ > 0. At each inversion point
there is a switch with energy loss, until it reaches a point
between the two minima where it stops.

The one-automaton problem. – The nature of the
problem can be better understood studying a single
automaton moving in a confining harmonic potential and
in a repulsive Coulombian potential that it feels only when
the centre of forces falls in its cone of vision. It can be
shown that the problem becomes one-dimensional and the
radial motion is described by the Hamiltonian

H =
ṙ2

2
+
L2

2r2
+
ω2r2

2
− ln(r)ϑ(C), (11)

where the cone condition is given by C =−rṙ−L cotα.
When α= π

2
the cone condition simplifies to C =−rṙ

which means that the switch between the two integrals
of motion occurs when an inversion point is reached
(the automaton feels a repulsive potential only when
approaching the origin).
It is easy to show (fig. 2) that the automaton reaches

a relative equilibrium whenever its inversion point is
between the minima of the different effective potentials
acting when the cone condition is verified or when it is not.
To this equilibrium point corresponds a circular orbit for
the radial motion. We have verified, using a second-order
symplectic integrator, that for any value of α< π the
asymptotic orbits are closed curves, with an energy lower
than the initial one (see fig. 3). An analogous behaviour
has been found, always using numerical integration,
for the radial motion of the two-automata problem.

The N-automata problem. – Our numerical study
shows that the loss of energy grows with the number
N of automata, leading quickly to a “frozen” state with
temperature T = 0 (we define temperature as the average
kinetic energy of the automata). The simulations show
that the N = 2 problem is the only one with a finite
equilibrium temperature (fig. 4).
The most natural way to avoid freezing would have been

to introduce some kind of “internal degree of freedom”
(and eventually even an internal energy), representing
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Fig. 3: Phase space trajectories for the radial motion of automata with different values of α.
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Fig. 4: (Colour online) Time evolution of the overall kinetic
energy for a N = 2 (red line) and N = 3 (black line) system.

the intention of the automaton to reach a given goal.
Nevertheless, given our interest in studying the effects
of non-Newtonian perception on automaton-to-automaton
interaction, and to compare the results to a known
physical system (Coulomb oscillators [5]), we decided to
represent the tendency of automata to reach the their goal
(the centre) only through the confining potential, and to
avoid freezing by introducing a memory mechanism.
The idea at the base of memory is that an automaton

can retain some information about the position of another
automaton even after that the latter exits its cone of
vision. The most natural assumption would be that the
“observer” calculates an approximate trajectory (for
example, constant velocity motion) for the observed
automaton when it exits the cone of vision. To make
the model computationally less expansive we assumed
that the observer can actually know the exact position
of the observed automaton for a “memory time” τ (this
choice is almost equivalent to calculating an approximate
trajectory for low values of τ).
We thus let automaton A feel a repulsion force from B

for a time interval τ after it escapes from its visual cone
(if r < rv, where r is the relative distance between
automata). By letting τ →∞, we recover (after a transient

Fig. 5: Equilibrium configurations for N = 4, α= π/2, rv =∞.
Left: disordered equilibrium configuration for automata with-
out memory, τ = 0. Right: spatially organised configuration
obtained using τ = 0.01, in which all the automata have
(roughly) the same distance from their first neighbours.
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Fig. 6: (Colour online) Time evolution of the “temperature”
T of a system with N = 100 automata, rv = 1, α= 0.1, for
different values of τ . Dissipation decreases as τ grows and for
high enough values of τ the system reaches an equilibrium state
after a transient.

phase) the case of N interacting charges without any
visual cone, where the total energy and the average
kinetic energy are preserved.
We have verified that for very low values of τ the system

goes to an ordered state with T ≈ 0 (while the spatial
distribution was disordered for τ = 0, fig. 5), and that
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Fig. 7: (Colour online) State diagrams for the gas of automata. The equilibrium values of T are shown for α= 0.1π (left),
α= 0.5π (centre) and α= 0.9π (right). τ is on the y-axis, and rv on the x-axis. Red corresponds to high temperature, violet to
a low one, as reported on the colour bar. Notice the “high-temperature island” for α= 0.1π.

for higher values of τ the system can reach a non trivial
equilibrium system, in which the temperature is positive
but different from that obtained in the conservative case
(fig. 6).
We have performed a throughout numerical investi-

gation of the time evolution for a system of N = 100
automata varying the control parameters α, rv and τ .
The initial conditions corresponded to to a self-consistent
charge distribution for Coulomb oscillators [5], a distrib-
ution with radius R̄= 1.84 in which the period of oscilla-
tion for particles was t̄≈ 10. On the basis of these values,
to obtain a description of all the features of the system,
we studied the following ranges of parameters: 0� α� π,
0< rv < 4 and 0< τ < 20.
This dependence on the parameters (the “state equa-

tion” of the gas of automata) is shown in fig. 7. The equi-
librium temperature usually decreases when rv increases
at α and τ fixed, whereas it grows with τ when the
other parameters are fixed. The first rule can be explained
considering that, as we stressed before, the introduction of
the non-Newtonian effect due to vision always leads to a
dissipation of kinetic energy, since the negative power that
the automaton feels when approaching another automa-
ton (the force is directed opposite to the velocity) is not
completely balanced by the positive power felt when going
away. It is clear that the higher is the value of rv, the longer
the automata interact and thus dissipate. The second rule
is quite obvious since we introduced memory in order to
attenuate dissipation.
Regarding the α-dependence of temperature we can say

that in general, keeping the other parameters fixed, the
temperature is maximum in the α= 0 and α= π cases
(i.e., in conservative systems), while it attains a minimum
for α= π/2.
Exceptions to these rules are found for low values of

α, where we found “islands” of high temperature for
certain ranges of τ . This happens when memory allows
the automaton to feel (as can be explained on the
base of geometric considerations), in certain situations,
the repulsive force mainly directed along its velocity
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Fig. 8: (Colour online) Time evolution of the “temperature”
T of a system with N = 100 automata, rv = 2, α= 0.1, for
different values of τ . Inside a given τ range the system reaches
a higher equilibrium value.

(positive power) and thus attenuates the damping process.
An analysis of the transition to equilibrium in the system
for these particular values of the parameters shows the
presence not only of a dissipative transient (as for all
the other values) but also of a second transient during
which a part of the lost energy is regained (fig. 8).
Since our system resembles (and is equal to in the α= π

and rv =∞ case) a system of Coulomb oscillators, which
is known to assume uniform crystal configurations when
frozen to T = 0 [6], and since our system naturally freezes
during time evolution, we studied also the emergence of
these organised structures and verified that they are actu-
ally present for low values of τ > 0 and for large enough
values of rv (both memory and a large enough range of
vision are necessary for the system to organise, but when
τ is too large the system does not freeze). In particular,
since we had noticed that in these structures the automata
where roughly located at uniform distances from their first
neighbours, we defined a “disorder parameter”

γ =
∆df
〈df 〉

(12)
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Fig. 9: (Colour online) Equilibrium values of γ are shown for α= 0.1π (left), α= 0.5π (centre) and α= 0.9π (right). τ is on the
y-axis, and rv on the x-axis. Red corresponds to a disordered structure and violet to an ordered one, as reported on the colour
bar. Ordered crystals are present for low values of τ > 0 and for large enough values of rv. The structure is almost perfect if
α= 0.5π, while it is very poor for low α.

Fig. 10: Equilibrium configuration for N = 100, rv =∞,
α= π/2 and τ = 0.1.

(where df is the distance to the first neighbour and ∆df
its mean squared deviation) that goes to zero in case of
a perfect uniform crystal. The equilibrium values of γ are
shown in fig. 9, while one of these crystals is shown in
fig. 10.

Conclusions. – The automata model we presented is
intended as a very naive model of people moving in an
open space with a single attracting point (the centre of the
harmonic potential), which renders the system sym-
metric by rotation. Obviously both the pure misanthropic
behaviour of the automata and the harmonic attraction to
the centre are not realistic enough to describe human or
animal behaviour, but they allow us to make a comparison
with a known conservative model (Coulomb oscillators,
see [5]), and focus on the non-Newtonian effects due to
sensory perception (vision).
Another possible application of our model is the study of

an “avenue”, in which we consider two groups of automata
moving in opposite directions and study the minimal
request for the emergence of organised patterns [7].

Fig. 11: (Colour online) Metastable (left) and stable (right)
T ≈ 0 configurations for automata split in two groups with
different “social radii” rs. Green automata have rs = 2, red
ones rs = 1.5.

Our preliminary study shows that in the presence of a
constant force field and a dissipation the two groups reach
a constant opposite velocity, in the absence of mutual
interactions. The repulsive mutual interaction causes self-
organisation phenomena with the formation of streams,
whose properties depend on the vision parameters.
This work might also be used as the basis for a

more complex model in which we can introduce more
realistic social forces that are attractive over a given
social radius [4], and also some heterogeneity by sampling
the vision parameters and the mutual force strength, in
order to simulate the approach to the equilibrium of a
system of individuals with contrasting goals (fig. 11 shows
a metastable and a stable equilibrium configuration for
such a system).
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