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2 Isituto Nazionale di Fisica Nucleare, sezione di Bologna

Summary. We present a simple model based on microscopic automata to describe
the clonal expansion process. The model is based on a repertoire of antigens and T
lymphocytes interacting via the APC cells which present the antigens peptides. Each
cell is represented by an automaton moving randomly on a two dimensional lattice.
We use this simplified model in order to introduce local and spatial considerations
in the mathematical models of clonal expansion based on differential equations, and
at the same time to attempt an analytical interpretation of the results of computer
simulations. For this reason we derive also a mean field theory, whose results are in
good agreement with the solutions of the of microscopic model, at least for situations
that are not too far from equilibrium. This model may be used as the base of a more
realistic one that could follow the clone expansion process on a simplified version of
the lymphatic network.
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1.1 Introduction

In this work we try to create a bridge between two different ways to study the
clonal expansion in the immune system (IS). One kind of approach consists in
studying the concentrations of the different species of cells, whose behaviour
and interaction is modelled through a system of differential equation (DE),
the other one in studying the microscopic interactions between the single cells,
that are usually modelled as Cellular Automata (CA).
It is our opinion that in immunology as in other fields of research the lan-
guages of microscopic (CA or agent) and macroscopic (DE) models could be
integrated, in order both to use the analytical result to explain and partially
predict the behaviour of the simulated models, and to utilise the simulations
to enrich with microscopic details the assumptions of the the macroscopic
models.
In this paper we present a simplified model of the clonal expansion, in which
we stress our attention on the spatial interaction between T cells and Antigen
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Presenting Cells (APC), while omitting the details of the T cell-antigen and
APC-antigen interactions, and ignoring many other important agents of the
IS. The aim of this paper is thus not to present a new model for the clonal
expansion, but to start a project of work in which two different ways to model
it could be combined.

1.2 Description of the model

1.2.1 Differential equations model

One of the major open question in immunology is the problem of understand-
ing clonal expansion , i.e. how the T cells, that belong to a very large reper-
toire, are selected in response to a specific treat (the presence of an antigen)
and proliferate to form a large clone, and how this proliferation is regulated.
De Boer and Perelson presented a model that justifies the maintenance of
diversity in the periphery through the concept of competitive exclusion ([1]).
This competition between T cells (between the different clones and inside the
same clone) arose as competition for the peptides presented on the surface of
APC. In fact these peptides can be freely available on the surface of an APC,
or be captured in the receptor of a T cell bound to an APC; in the second
occurrence they are no longer available to other T cells.
De Boer and Perelson imposed a quasi-steady-state condition for the num-
ber of complexes given the number of peptides, and obtained a system of
differential equations for the different clones sizes, which corresponded to the
well-known principle of competitive exclusion ,in biology (two different species
cannot co-exist in equilibrium if they use just the same resource) and intro-
duced also a capacity (equilibrium size for a single clone).
In this model the number of peptides is considered to be proportional to the
antigen concentration, which is assumed as fixed. This assumption is well jus-
tified in case of self antigens, while for pathogens they assumed this fixed
concentration to be the equilibrium value of a prey equation for the antigens,
in which T cells had the role of predators. Using this assumptions, immune
memory is attained through the persistence of antigen at a controlled concen-
tration. (See [2] and appendix 1.5 for a treatment of prey-predator equations,
and [3] for an application to the immune system).
This is one of the many models that describe the clonal expansion using a
system of differential equations (see for example[4]) and has been further on
studied and improved by the authors ([5]). Our interest in this version of the
model is due to its simplicity and to the fact that its basic assumptions con-
cern the microscopic spatial interactions between T cells and APC, averaged
in the quasi-steady-state condition.
Since there are many experimental results concerning how these interactions
happen [6, 7, 8, 9], we think that this model is well apt to a microscopic for-
mulation, in which the different individual cells are represented as automata
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in a computer simulation (we use the term automaton referring to the original
definition by Von Neumann, and not just to cellular automata, i.e. we don’t
necessarily identify a biological cell with a site of a discrete grid, even if it is
the case of the model that we are going to present). ,
These are the differential equations that describe our version of the De Boer-
Perelson model

Ȧi = aAi − bAi
2 −

∑

j

cijAiTj (1.1)

Ṗi = dAi − rPi (1.2)

ṄAPC = 0 (1.3)

Ṫ N
i = 2gTi

A − hTi
N −

∑

j

kijTi
NTj − lf(

∑

j

mijPj)FTi
N + oCi + s (1.4)

Ṫ A
i = qCi − gTi

A (1.5)

ĊA
i = −qCi − oCi + lf(

∑

j

mijPj)FTi
N (1.6)

Ḟ +
∑

i

Ċi = 0 (1.7)

Equation 1.1 tells us that the nA species of antigens Ai follow a logistic prey
equation in which the nT T cell clones Ti have the role of predators. Equation
1.2 gives the probability to find a peptide of species i, Pi, (we assume for
simplicity a one to one correspondence between peptides and antigens) in a
site of an APC cell. This probability grows with the number of antigens and
follows a decay rule (peptides remain on the APC’s surface for a finite average
time). With equation 1.3 we fix the number of APC cells.
Equation 1.4 and 1.5 concern the number of non-activated Ti

N and activated
Ti

A T cells (Ti ≡ Ti
N + Ti

A). Non activated T cells are produced by du-
plication of activated ones with a rate g and die by apoptosis with rate h.
The probability rate s represents an external source (thymus). F is the total
number of free sites on the APC’s surface, to which T cells can bind with a
probability rate that depends on a function f of the probability to find a given
species of peptides multiplied by its affinity mij to it. We call Ci a complex
formed by a T cell Ti and a site of an APC. These complexes can unbind
with probability rate q in case of successful activation (equation 1.5) and with
probability rate o in case of unsuccessful activation (equation 1.4). The terms
kij in equation 1.4 rule the fratricide competition between the T cells (see for
example [10]).
The number of complexes and free sites is governed by equations 1.6, 1.7 co-
herently with the assumptions of equations 1.4, 1.5 and with the request that
their sum has to be fixed as the total number of sites (nsNAPC if ns is the
number of sites on a single cell).
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1.2.2 Microscopic model

In the differential equations based model we tried to write explicitely an equa-
tion for each agent of the process, and we defined a probability rate for each
interaction between these agents, since we want these equations to be the
mean field version of a microscopic model. Given the high number of equa-
tions and parameters we won’t try an analytical treatment and we will rely
on numerical integration for their solution. Our microscopic model is realized
on two superposed 2D squared grids, one on which antigens move and one for
APC and T cells. The physical region corresponding to each layer will be the
same (creating a correspondence between sites “located in the same physical
space”) while the step of the grids and thus the number of sites could be
different.
All the cells move by random walk obeying an exclusion principle (no more
than a single cell on a given site of a layer), and the interaction between cells
can happen by superposition when they are located on different layers, or by
contact (i.e. if the are located on first neighbour sites) if they are on the same
layer. We call these events that allow an interaction between the cells “en-
counters”. An encounter between an antigen Ai and a T cell Tj leads to the
elimination of the antigen with probability pc

ij , while an encounter between an

antigen and an APC leads with probability pd to the presentation of a peptide
on the “surface” (i.e. on one of the four sides) of the APC (in our convention
we associate to the probabilistic rate x in the continuous macroscopic model
the probability px in the discrete microscopic one). Encounters between a T
cell Ti and an APC can form a complex, with a probability pl multiplied by
the affinity to the site f(

∑

j mijPj) (a function of the averaged affinity to the
peptides). Encounters between the antigens lead to an over-population due
“logistic” elimination of the antigen with probability pb, while those between
T cells in clones i and j lead to fratricide apoptosis with probability pk

ij .
These fratricide terms are in a certain sense “ad hoc” in our model (they are
not present in the original formulation by De Boer and Perelson, even if they
are present in other models, as in [10]), since we need them to avoid a filling
of the grid. They should be chosen in such a way that they are not relevant
under normal conditions (i.e. when the number of occupied sites is low with
respect to the total number of sites). All the other processes are encounter
independent and can happen with given probabilities at each time step.
It is quite clear that this model is too simple to describe all the complex
processes that concern the clonal expansion in the immune system. A more
complete formulation should use at least two different 2D grids to describe
the site of infection and the lymph-nodes (connected in some way to allow
the displacement of T and dendritic cells), while for a realistic description of
immunological memory a differentiation between naive and memory T cells is
necessary.
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1.2.3 Mean field equations

All the probability rates in a macroscopic model have to be chosen on the base
of macroscopic observations, in such a way that the behaviour of the solutions
will correspond to the behaviour of the biological species under some given
assumptions.
According to the spirit of this work, the probabilities of the microscopic model
should be given on the base of microscopic observations, as reported for exam-
ple in [6, 7, 8, 9]. The time step step should be chosen smaller than the shorter
characteristic time of the processes involved, and all these characteristic times
should be expressed as probabilities. An average process would be necessary
to describe 3 dimensional cells with a complex shape as 2D squared objects,
and probably also minor changes on the geometry (allowing for example APC
and T cells to have different size) could be necessary.
Given the preliminary stage of this work and its general purposes, and con-
sidering also our limits in the interpretation of experimental data given our
scientific formation, we just do very simple considerations that allow us to
have some qualitative result, without any claim to quantitative or predictive
results.
We can obtain the mean field equations for the microscopic model in the
following way. Let us assume for example that the average time for antigen
duplication is one day. If we choose a time step of 15 minutes, the probability
for antigen duplication is fixed to pa = 0.01. Defining NA as the number of
sites of the antigen’s grid and assuming random distribution for all the cells,
the probability for an antigen to have an encounter with another antigen on
one of its 4 sides is A/NA, and thus the time evolution of the number of
antigens in absence of T cells is given by

A(t + ∆t) = A(t) + paA(t) − pbA(t)2/NA (1.8)

The value of pb can be fixed given the wanted maximum density of antigens
(the capacity),

Amax/NA = pa/pb (1.9)

and in the continuous limit we obtain equation 1.1 through the identifications
a = pa/∆t, b = pb/(NA∆t).
The discrete version of equation 1.2 is, referring to Πi as the number of pep-
tides of species i on a single side of an APC,

∑

APC

Πi(t + ∆t) =
∑

APC

Πi(t) + pdAi(t)NAPC/NT − pr
∑

APC

Πi(t) (1.10)

or, averaging over all the sides

Pi(t + ∆t) = Pi(t) + pdAi(t)/(4NT ) − prPi(t) (1.11)

where NT is the number of sites of the APC-T cell grid. The continuous
version of 1.11 is equation 1.2, through the identification d = pd/(4∆tNT ),
r = pr/∆t. Equation 1.2 has solution
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Pi(t) = e−rt
[

∫

Ai(t
′)ert′d + const

]

(1.12)

that reduces to

Pi(t) =
Aid

r

[

Pi(0) − Aid

r

]

e−rt (1.13)

in case of constant Ai concentration. We use pd = 1 (the APC always recog-
nises the antigen) and pr = 0.02, corresponding to a permanence of the peptide
on the antigen surface for an average time of 12 hours.
We compare in figure 1.1 the numerical integration of equation 1.1 (for a single
species) with the corresponding results given by the microscopic model, and
in figure 1.2 we present the same comparison for the analytical result of equa-
tion 1.11. (We have used for these simulations NT = 9x104, NA = 3.6x105

and pb = 0.05 which corresponds, according to equation 1.9, to a capacity of
an antigen every 5 sites).
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Fig. 1.1. Comparison between the free growth of the antigen number A(t) as ob-
tained from the microscopic model (continuous line) and the mean field equations.
The time unit is one day, as in all the figures to follow.

While there is an almost perfect correspondence between the curves in
figure 1.2, there is a slight difference between those in figure 1.1. This effect
is due to the fact that while the behaviour described by equation 1.2 depends
on the interaction between cells located on different layers, and thus is not
actually based on microscopic spatial interactions, the behaviour described by
equation 1.1 relies on and influences the spatial distribution of antigens. For
this reason the mean field equation describes well the microscopic model in
the initial configuration, when a uniform distribution is imposed, and at the
equilibrium, while the discrepancy is stronger during the expansion.
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Fig. 1.2. Average number of peptides as obtained by the microscopic model (con-
tinuous line in grey) and the mean field equations. The two lines are almost indis-
tinguishable.

The local effects are obviously stronger when we consider the spatial T-
APC interaction. Let us fix NAPC = 2x103 on the NT = 9x104 grid, use the
sigmoid function

f(
∑

j

mijPj) =
1 − e

P

j
mijPj

1 + e
P

j
mijPj

(1.14)

to obtain the affinity of a T cell to a site on the APC surface, pg = 0.05 (an
activated T cell needs 5 hours to split referring to the time step of 15 min-
utes), ph = 0.001 (a life span of 10 days for the T cells), pl = 0.25 (an hour to
form a complex in case of maximum affinity), pq = 0.2, po = 0.04. (These are
the probabilities to unbind with and without activation in case of maximum
affinity. The dependence of these microscopic probabilities on the affinity has
been chosen “ad hoc” is such a way that the first one grows and the second
one decreases with affinity).
If now we consider a single clone T with maximum affinity to a single species
of antigen A (m ≡ m11 = 1) and fix A to its maximum capacity (c ≡ c11 = 0,
i.e. antigens are not removed), we can obtain in the usual way the discrete
mean field equations for T , F and C whose continuous limit leads to equations
1.4-1.6, redefining the parameters on the base of the microscopic probabilities.
Figure 1.3 refers to the growth of the clone, and compares the integration of
the mean field equation with the results given by the microscopic model (the
fratricide term value is fixed to pk = 0.1). In this case the discrepancy is
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stronger, and also a qualitative one. The growth in the microscopic model is
lower at the beginning, while the equilibrium value is higher. Two different
effects are present, both due to the presence of zones around the APC in
which T cells reproduce: the fratricide effect is enforced because of the higher
density in these zones, but also the probability to meet an APC and thus to
be activated is enhanced. Since these effects depend strongly on the density
of cells, is possible to obtain the parameters of equations 1.1-1.7 by a pro-
cess of best-fitting only on regions in which the values of A and T are almost
constant (this means that those equations are able to describe properly the
behaviour of the microscopic system only if we introduce a dependence of the
parameters on A and T ).

0 5 10 15 20
0,0

5,0×10
3

1,0×10
4

1,5×10
4

Fig. 1.3. T clone expansion in response to a fixed number of antigens in the micro-
scopic (continuous line) and mean field models.

1.3 Results of the simulations

1.3.1 Acute antigenic impulse

In order to complete the model we have to fix the value of the parameters
cij ≡ c mij (we are assuming that the ability of a T cell in removing an antigen
is proportional to its affinity to it). We have used c = 0.2 in order to obtain
a realistic time scale for the response of the immune system to the infection.
In figure 1.4 we plot the evolution of the clone size T and antigen A popula-
tion, comparing the results of the microscopic model with the solutions of the
mean field equations. In agreement with the previous discussion the results
are very similar at equilibrium values, while the agreement is only qualitative
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during the transient part. Damped oscillations are present in both models,
and both the period and the height of peaks and valleys are of the same order
of magnitude (the damping rate and the period of oscillations are higher in
the microscopic model).
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Fig. 1.4. Evolution of the system under an acute antigenic stimulus. The evolution
of the antigen number in the microscopic (continuous line) and mean field model is
shown at left, while the size of the T cell clone is reported on the figure at right (the
continuous line corresponds to the microscopic model)

This behaviour corresponds to that of a prey-predator system (see ap-
pendix 1.5 and [2]). To an equilibrium value with A 6= 0, B 6= 0 corresponds a
“memory” effect due to the permanence of the antigen. In this situation the
response to a secondary stimulus is obviously quicker (figure 1.5).
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Fig. 1.5. Left: evolution of the antigen population after a secondary impulse occur-
ring 50 days after the primary; microscopic model. Right: corresponding evolution
of the T cells clone.
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1.3.2 The clonal repertoire model

We finally consider the effects of both fratricide and spatial competition terms
between different clones in presence of a differentiated antigen repertoire. By
using a fratricide term in which the decrease is proportional to the overall size
of the clones, ∆−Ti = −kTi

∑

j Tj , we obtain a mutual exclusion principle. In
fact, if we summarise with ∆+Ti the growth terms, the relative variation of
the clone size is

Ṫi

Ti

=
∆+Ti

Ti

− ∆−Ti

Ti

Since ∆−Ti/Ti is the same for all the clones, supposing that there is a
unique antigen with the highest affinity to the clone Tj (namely ∆+Tj/Tj >
∆+Ti/Ti ∀i 6= j), if the clone j reaches an equilibrium ∆+Tj = ∆−Tj then
any other clone extinguishes since ∆+Ti −∆−Ti < 0. (These are the basics of
competitive exclusion, see [2]).
To show that in our model there is competition for peptides presented at the
APC surface (the mechanism investigated in [1]), we can use a “pure fratri-
cide” term −kTi

2. This is actually a ”non-competitive” one since it favours
the small clones. In fact, studying the expansion of 3 clones under the stimulus
of a single antigen, using an affinity matrix mi,1 such that mi,1 ≪ m1,1 = 1 if
i 6= 1 we have (figure 1.3.2) an equilibrium with T2 6= 0 (figure 1.6)
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Fig. 1.6. Time evolution of the size of three clones one of which (continuous line)
has higher affinity to a given antigen

Nevertheless even in this situation the competition for the peptides on the
APC surface leads to a control in the overall number of T cells, at least when
the number of clones is large. To study this effect we introduce an antigen
with constant concentration, to which 10 clones have maximal affinity. Once
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Fig. 1.7. Time evolution of the size of 10 clones (continuous curves) stimulated
by a single antigen and shrinkage due to the expansion of three new clones (not
continuous)

these clones have reached their equilibrium size, we introduce three different
additional antigens at which three new clones are highly affine. The results of
figure 1.7 show that the size of the ”old” clones shrinks as a a reaction to the
growth of the new ones.

1.4 Conclusions

Analytical models and simulations are usually treated as completely distinct
fields of research, even when they face the same problem. In this paper we have
presented a microscopic dynamical model inspired by the clonal expansion in
the immune system, together with a system of differential equations that
could be interpreted as its mean field theory. We have shown how the mean
field equation can be used to interpret the results of simulations, while the
microscopic model can be used to add a local and spatial character to a
macroscopic system based on differential equations.
We don’t claim that the results of our model are biologically relevant, but we
present it as a starting point for a more complex model and as a solution for
a compromise between pure analytical and pure simulated models that could
be used in different fields of research.

1.5 Appendix

The dynamics of the model can be described by a simplified system of dif-
ferential equations for A and T . We assume that the antigen-APC-T average
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interaction consists of a growth term for the T clone proportional to A. The
equations become

Ȧ = A(a(1 − cA) − bT ) Ṫ = T (−d + eA − fT ) (1.15)

These Lotka-Volterra equations with a logistic term have been extensively
investigated and if e > cd they exhibit a critical stable point

Tc =
a(e − cd)

eb + caf
Ac =

af + db

eb + caf
(1.16)

Every solution in the positive sector T > 0 A > 0 is attracted by this point
which is topologically a focus. Convergence rate to equilibrium and the os-
cillations period are determined by the eigenvalues of the Jacobian matrix.
From its trace and determinant

Tr J = −a
acf + bcd + ef − cdf

eb + acf
< 0 det J =

a(e − cd)(bd + af)

eb + acf
> 0

(1.17)
we obtain the eigenvalues λ± = 1

2
[ TrJ ±

√
Tr J2 − 4detJ ] which are real

negatives or complex with negative real part. We have oscillations if is
∆ = trJ2 − 4detJ = −ω2 < 0 and their period is 2π/ω.
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