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We introduce a collision avoiding method for simulated agents based on re-
cursive thinking, in order to understand if more developed “Theory of Mind”
abilities (used to predict the motion of the others) can allow the agents to
perform in a better way in a complex environment. Agents move in their en-
vironment trying to reach a goal while avoiding collisions with other agents.
They try to predict the motion of the others taking in consideration also the
others’ prediction. This introduces a recursive process, that we stop at a given
“recursion level”. We study the evolution of this level, showing that there is
a difference between even and odd levels, that leads to a correspondence with
the hawk-dove game, and that the collision avoiding abilities grow with the re-
cursion level l, at least when the problem to be solved is complex enough. We
also show that if the fitness function is properly chosen, the system converges
to a stable state composed almost only of high level agents.
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1. Introduction

Human beings have developed the ability to assume the “Intentional

Stance”1 when dealing with other humans (but also with animals and

complex artifacts), i.e. they try to predict the behaviour of an opponent

assuming that she has intentions and beliefs. Following the seminal work

by Premack,2 an individual with this ability is said to have a Theory of

Mind (ToM). Human Theory of Mind can assume that also the others have

a ToM, and thus is capable of nested mental states or higher order ToM,3

leading to some kind of recursive structure (I think that you believe that

she thinks...).

A large amount of research has been dedicated to understanding if non-

human primates have a ToM (or to what extent they have it),4 and to

understand the relation between Theory of Mind deficits and Autistic Spec-
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trum Disorders.3 According to the “Machiavellian Intelligence” hypothesis,5

high cognitive properties, including ToM, evolved in primates as the result

of strong social competition, since they allowed for an higher (social and

thus mating) success. In this work we propose an evolutionary computa-

tional model with agents capable of different levels of “recursive thinking”

(or “nested mental states”). The situation that our agents have to face

(moving in a crowd) is not complex enough to necessarily require high

ToM levels,6,7 but allows for a sound description in a realistic even if sim-

ulated physical space. Our agents are 2D discs, whose physical dynamics is

exactly resolved, each one provided with a spatial goal (a region it wants

to reach). Following Takano et al.8,9 we call level 0 an agent that moves

straight to the goal, without taking into account the others, while a level

1 agent can observe a neighbouring region of space and predict its physical

dynamics in order to regulate its motion. Nevertheless a level 1 agent has

no ToM, i.e. it assumes that the dynamics of the others is purely physical

(it assumes them to be level 0). A level 2 agent is capable of “first order”

ToM, i.e. it assumes that also the other agents have a physical model of

their environment (assuming them to be level 1). “Second order” ToM10 is

attained by level 3 agents assuming that the others are level 2, and so on.

2. The Model

Our model is based on simulated agents, each one being a 2D disc with

radius R moving in a corridor, i.e. in a 2D space delimited by two parallel

walls and with two open ends. A “crowd” of N ≈ 102 agents is roughly

uniformly divided in two groups, each one with a different goal (one of the

ends of the corridor).

The dynamics of the system can be divided in a physical and a “cognitive”

one. The latter, described in detail later, is applied simultaneously by all

agents at discrete times with time step ∆t, and acts as an impulsive force

f c according to

v(t) = v(t − ∆t) + fc(t)∆t (1)

x(t + ∆t) = x(t) + v(t)∆t (2)

If the magnitude of the velocity is greater than a maximum value vmax,

the velocity is simply scaled to vmax while preserving its direction. The

physical dynamics is given by elastic collisions between the discs and with

the walls, and is exactly solved as a continuous time function using an event

driven algorithm. The cognitive force fc is the sum of an external term E
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(a constant field directed towards the agent’s goal) and a collision avoiding

term fint

fc = fint + E (3)

fint depends on the interaction with the other agents and is determined

by the agent’s “level of recursive thinking” l. By definition, fint = 0 for a

l = 0 agent, i.e. level 0 agents have no cognitive interactions. l > 0 agents

observe the position and velocity of all the other agents that are located

at a distance d < rv (the “radius of view” of the agent). On the basis

of this observation they forecast the future evolution (of the physical and

cognitive dynamics) of this portion of the system for a time tf = n∆t,

with n a positive integer. While the physical dynamics is trivially defined

by elastic collisions between agents and with the walls, the cognitive one is

recursively determined assuming that all the observed agents will move as

l−1 agents (where l is the level of the agent performing the prediction) while

the agent itself will move as a l = 0 one (this definition can be explained

in the following way: l − 1, by definition, is the highest level of prediction

at which a level l agent can forecast the others’ motion, while in predicting

its motion the agent assumes that it will move straight to its goal, in order

to attain the highest performance). While forecasting the evolution of the

system, the agent keeps track of all the (predicted) collisions that it will

have with the others and with the walls. Denoting ti as the time of the i-th

predicted collision, and pi as the total momentum exchanged during the

collision (see Fig. 1 for a definition and explanation of p), we have

fint =
∑

i

pi

ti
(4)

(The agent changes its velocity in order to avoid the collision, assuming

that the others will keep their velocity according to the prediction. The

idea at the basis of this definition is to avoid strongly any predicted colli-

sion, so that the prediction abilities of our agents can be reliably measured

by the amount of collision. Nevertheless other methods can lead to more

smooth trajectories6,7 and to the emergence of self organised patterns as

those shown by actual pedestrians11).

All the operations concerning both the observation of an other agent’s posi-

tion and the prediction of its motion are prone to a random (relative) error

of order 10−4.
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intf

p

Fig. 1. Definition of p in Eq. (4). The green ball is forecasting its motion and that of
the red one. At the moment of collision t (dashed balls) it subtracts the component of its
momentum orthogonal to the surface of collision to the component of red’s momentum

in the same direction. The result is p which is then scaled as p/t to obtain the force
fint which acts on green’s motion. In case of a collision with a wall we have the same
procedure but the term due to the other agent (red arrow) is set to 0. In the latter case
p is just half exchanged momentum.

2.1. Experimental Setup

The agents have radius R = 0.5 m, are located in a corridor of length 50

m and width 5 m and can move with a maximum velocity vmax = 1 m/s,

while the attraction to the goal is E = 0.5 m/s2 (masses are considered

fixed to 1, and thus accelerations equal to forces) and the radius of view is

rv = 3 m. We use as time step ∆t = 0.4 s while the time step of prediction

of the future dynamics by the agents is set to tf = 3 ∆t = 1.2 s. We use a

population of N = 50 agents, with values of l in the 0-4 range, randomly

given in the first generation using a uniform probability distribution.

In the evolutionary experiments each generation consists of three tests, each

one of time length T = 100 s. In each test agents are initially randomly

located in the corridor, and when they reach their goal (i.e., a given end

of the corridor) are relocated at the other end (in a randomised transverse

position). During each generation and for each agent we keep track of its

average velocity towards the goal (v) and average momentum exchanged

in collisions (p), and we evaluate its individual performance using a fitness

function given by

f = v − β p (5)

where β ≥ 0 is a parameter that determines the relative weight of collision

with respect to velocity. We use this fitness function because we want agents

to be able of moving in the direction of the goal, while avoiding collisions.

We underline that the collision avoiding ability that we have introduced in

our model has been thought in order to minimise p, which is a measure of the

prediction ability of the agents. Nevertheless, using fitness (5) we introduce

the benefit of exploiting the collision avoiding abilities of another agent (as
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we show below), and thus a more interesting evolutionary dynamics.

The genetic algorithm uses tournament selection (two agents are randomly

chosen in the previous generation, their fitness is compared and the winner

passes its character -i.e., its value of l- to the next generation). The mutation

operator acts with probability pm = 0.05, changing l to a different value

randomly chosen in the allowed range .

3. Behaviour for Different Values of l

Before performing any evolutionary experiment we have analysed the col-

lisional properties of our agents under controlled conditions, in order to

understand more deeply some features of the model.

First of all we have studied the behaviour of agents in binary collisions. To

do that we have repeated 1000 times an experiment in which two agents

with different goals and colliding trajectories were located in a corridor

without walls at a distance comparable to their average free walk under

our experimental conditions. The v and p values attained in these experi-

ments, for collisions between agents in all the possible combination of l in

the 0-4 range, resulted to be modulus 2 symmetric, i.e. even (or odd) levels

are not distinguishable between them (in binary encounters) and thus the

system can be completely described by a 2 × 2 f (fitness) matrix (Table

1) that, for any value of β, takes the form of the classical hawk-dove game

matrix,12 where even levels correspond to hawks, odd to doves (an asym-

metry between even and odd levels had been already found by Takano et

al.8,9). The reason of this symmetry can be understood noticing that we

Table 1. Fitness in binary en-
counters. fij gives the fitness
attained by i in an encounter
with j

l even odd

even 0.56 - 0.27 β 1

odd 0.64 0.76

never had, in all our simulations of binary encounters, a collision concerning

an odd level agent (this is the reason β appears only in the even-even term

of fij). When interacting with a l = 0 agent, a level 1 agent predicts in

an accurate way the motion of its opponent, and avoids the collision. Since

a l = 2 agent, interacting with any other agent, will predict the motion

of this one as if it were level 1, and its motion as if itself were level 0, it
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will predict no collision (fint = 0, Eq. (4)), and thus l = 2 is completely

equivalent to l = 0 (and by iteration we obtain the symmetry between all

even and all odd levels).

Following12 we can calculate an evolutionary stable state from Table 1 as

the portion of agents in odd levels xo ≡ No/N (where No is the number of

odd level agents) for which the average odd fitness is equal to the average

even one, which is

xo =
foe − fee

foe + feo − foo − fee

=
0.64 − (0.56 − 0.27β)

0.64 + 1 − 0.76 − (0.56 − 0.27β)
=

0.08 + 0.27β

0.32 + 0.27β
(6)

(foe is the fitness of an odd agent when meeting a even one, and so on,

see Table 1). Equation (6) gives some qualitative results for the evolution

of a mixed population of level 0 and level 1 agents (the system seems to

converge to a stable value of xo, and this value grows with β, see Fig. 2, left)

but the results are not in quantitative agreement with the predicted ones.

Furthermore, the evolution of a level 1 and 2 population still converges to

a stable xo that grows with β, but at fixed β these values are not equal to

those obtained in the level 0 and 1 case (Fig. 2, right).

These results show that the multi-agent dynamics have properties that
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Fig. 2. Left: evolution of the number of odd level agents xo in a population with l = 1
and l = 0 agents (N = Ne + No = 50), for β = 0.5 (green), β = 1 (black) and β = 2
(red). Right: evolution of xo with β = 1 in a population composed of l = 0, 1 (black)
and l = 1, 2 (red) N = 50 agents.

cannot be analysed just studying binary encounters. Table 2 reports the

f matrix for encounters concerning 4 agents, two from each species. The

interaction with more than a single agent makes impossible for l = 1 agents

to avoid all the collisions, and thus breaks the symmetry between l = 0 and

l = 2 (the term in Eq. (4) is now different from zero for l = 2, thus these

agents interact and usually behave better, in particular concerning p, than
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l = 0 agents). These results can explain those in Fig. 2: first of all, they

Table 2. Fitness in encounters with 4 agents. fij

gives the average value attained when 2 agents of
level i meet 2 agents in level j.

l 0 1 2

0 0.40 - β 0.61 0.75 - β 0.21 0.42 - β 0.57

1 0.32 - β 0.04 0.62 - β 0.01 0.35 - β 0.01

2 0.42 - β 0.50 0.81 - β 0.10 0.43 - β 0.43

show that it is impossible to obtain quantitative estimates of the fitness

of agents in a crowd just from binary encounters (since our dynamics does

not follow a superposition principle); second, that it is plausible that level

2 agents will behave better than level 0 ones when interacting with level 1

(in particular for high values of β). From the analysis of Table 2 we observe

that, even if the even-hawk, odd-dove analogy is still valid (even level have

the tendency to move straight, while odd ones to avoid the collision), the

matrix corresponds to the classical one only for a given range of β.

Nevertheless, Table 2 too does not provide quantitative information about

the dynamics of a large population, in which the presence of limited knowl-

edge effects causes a larger number of level 1 collisions and thus a more

complex l dependence of the dynamics. Figure 3 shows v and p in a homo-

geneous population of 50 agents (i.e, all agents have the same value of l),

as a function of l. We can see the difference between even and odd levels,

but also a tendency to increase v and decrease p as l grows, both for even

and odd levels (the only exception being v for even levels, which is almost

constant). Notice that, in comparison with the results on the diagonal of

Table 2, the amount of l = 1 collisions has increased by an order of magni-

tude and that, correspondingly, also the difference between l = 0 and l = 2

has grown.

4. Evolutionary Experiments

The fitness of our agents is determined by a function f = fl({xl}, β) of β,

of their level l and of the composition of the population {xl}, xl ≡ Nl/N .

If we knew this function, we could study the population dynamics using a

replicator equation.12 As we have seen, this dependence cannot be derived

analysing encounters between a low number of agents, but just studying

the actual dynamics of a crowd of agents (only when N is large enough

the number of l = 1 collisions becomes significant). Even if the dependence
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Fig. 3. v (black, circles) and p (red, squares) as a function of l. These data were obtained
as averages over 100 tests with N = 50 agents, each test lasting T = 100 s.

on β is trivial (because this parameter has no effect on dynamics, only on

evolution), since we have verified that fl({xl}, β) is not linear in xl, an es-

timate of this function good enough to give quantitative results for l in the

0-4 range would require a large number of tests in order to obtain a data

set suitable to some kind of interpolation. This kind of analysis would be

affordable from a numerical point of view, but scarcely meaningful since its

computational cost is much higher than that of a full evolutionary experi-

ment, and thus we have not performed it at this stage.

The results of our evolutionary experiments (averages over 10 repetitions

of the experiment) are shown in Fig. 4. We can see that in the β → 0 limit
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Fig. 4. Evolution of xl (l = 0 in yellow, l = 1 in blue, l = 2 in green, l = 3 in red, l = 4
in black), data obtained as averages over 10 repetitions with N = 50 agents. Left β = 0.
Centre β = 1. Right β = 10.

the population is invaded by level 0, in the β ≫ 1 limit by level 3, while for

β ≈ 1 the population is almost uniformly split in the 3 higher levels (the
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system seems to converge always to a stable state).

5. Analysis

While the p term in Eq. 5 measures directly the collision avoiding prop-

erties of agents and is symmetric, i.e. it has the same value for all the

agents involved in a interaction (at least in binary collisions), v depends

indirectly on collision avoiding and can be highly asymmetric, allowing the

exploitation of another agent’s behaviour. For this reason the value of β

determines the degree of cooperation of the system, leading to selfish be-

haviour if β → 0 and to cooperative behaviour if β → ∞. In the β ≫ 1

regime our system is invaded by the highest possible odd level, showing

that this level has the highest ability to predict the evolution of the system

and thus to avoid collisions. Lowering the value of β the number of even

agents at equilibrium increases, in qualitative agreement with equation 6.

Nevertheless, while for β ≈ 1 the even population is invaded by high levels,

due to their higher prediction and thus collision avoiding properties, when

β goes to 0 the completely “selfish” l = 0 agents invade the population.

l = 1 agents never have a major role in the process, showing that their

behaviour differs from l = 3 only in a lower prediction ability. This results

show that when a large number of agents are interacting and the problem is

not trivial the “modulus 2” symmetry is broken and high levels have higher

prediction properties.

6. Conclusions

We have seen that a collision avoiding system based on high level recursive

thinking prediction of the motion of the others is both more effective and

(at least if the fitness function is chosen in such a way to allow the evolution

of a cooperative behaviour) favoured by the evolutionary process. In this

first model we have not considered the cost of computation, which grows

exponentially with l. Since we have noticed that the difference between low

and high levels grows with the difficulty of the problem (in this case the

number of l = 1 collisions) it is probable that the balance between the cost

of computation and the benefit due to more precise prediction is determined

by the nature of the problem (we intend to study this aspect more in depth

in a future work).

In this model we have allowed our agents to have a 360 degrees vision,

limiting the effects due to partial knowledge that are surely interesting in
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a recursive thinking model and that will be analysed in future.

This work presents also the difference between even and odd levels discov-

ered by Takano et al.8,9 It can seem strange that the evolution of recursive

thinking leads to such a discontinuous behaviour, but we stress that in our

work, as in Takano’s, we are considering just pure strategies. Probably an

actual level l agent should not just consider the results of its level l calcu-

lations, but would weight them with those resulting from calculations at

lower levels. The introduction of such weights in the “genetic code” of the

agent should enhance strongly its computational power. Furthermore, these

weights could be updated after each interaction using some reinforcement

learning method, introducing a more realistic learning process and allowing

the study of the evolution-learning interaction. We intend to study such a

model in a future work.
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