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Abstract – We introduce a new specification of the social force model in which pedestrians
explicitly predict the place and time of the next collision in order to avoid it. This and other
specifications of the social force model are calibrated, using genetic algorithms, on a set of
pedestrian trajectories, obtained tracking with laser range finders the movement of pedestrians in
controlled experiments, and their performance is compared. The results show that the proposed
method has a better performance in describing the trajectory set.
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Introduction. – Models of pedestrian behaviour have
been proposed starting from the late 1950s [1]. These
models were focused on the dynamics of macroscopic
quantities (densities and fluxes), and the dynamics of
pedestrians was treated in a way similar to that of
gases or fluids [2], but later the attention has shifted
on a microscopic description, in which the motion of
each pedestrian is individually described. These models
can be roughly divided into Cellular Automata models
using a discrete-space description [3,4], and models using
a continuous-space description. Given our interest in
introducing human-like collision prediction and avoiding
abilities in robots to have them move smoothly in non-
overcrowded environments such as shopping malls [5], we
are interested in a detailed description of the microscopic
motion of pedestrians, and thus we will rely on the latter
(agent model) approach.
Local collision avoiding is a basic component of any

pedestrian agent model. The calibration of a colli-
sion avoiding model has been traditionally done not
using local information about individual motion, but data
concerning macroscopic collective behaviours; studying
phenomena such as pattern formation [6,7], bottleneck
oscillations [8] and speed-density relations [9]. The reason
of this global approach was related both to the difficulty
of tracking individual positions using an automatic
system [10] and to theoretical issues with the prediction
and modelling of individual human behaviour [11]. Many
models have proved to be able to describe qualitatively
collective dynamics [12,13], but quantitative information
about these behaviours is surprisingly difficult to obtain,

(a)E-mail: zanlungo@atr.jp

in particular in real world situations [14]. Furthermore,
we believe that if the pedestrian model is intended to
simulate not only macroscopic features of crowd dynam-
ics, but also local motion, calibration should also take in
account data regarding individual trajectories.
Lately, with the improvement of automatic tracking of

pedestrian trajectories from video and laser sensors [10],
a few calibrations on individual trajectories have been
performed [15–17], allowing model calibration based on
local behaviours, and this work follows this kind of
approach. Pedestrian trajectories are tracked using laser
range finders [18] in a controlled experiment, that repro-
duces a situation in which density is relatively low, and
pedestrians are moving in many different directions, as we
expect to happen in a shopping mall. A general method to
calibrate a pedestrian collision avoiding model was intro-
duced in [15], and genetic algorithms have proved to be an
effective optimisation tool for this problem [19]. Genetic
algorithms also allow the calibration of relatively complex
models for which an analytical derivation could be prob-
lematic (models using some kind of artificial intelligence,
boolean choices etc).
The social force model [20] simulates pedestrian dynam-

ics using interaction forces. It introduces a quite general
framework in which the details of the collision avoiding
behaviour can be expressed through a function depending
on the relative and absolute positions and velocities of
the pedestrians. Even in its simplest formulation that
uses only information about positions, the model des-
cribes correctly many qualitative features of pedestrian
behaviour, in particular in the high-density regime.
Improved specifications of the model have been intro-
duced, taking into account pedestrian velocities [16].
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Some of these specifications are calibrated in this work,
and compared to a new specification that uses a collision
avoiding model based on explicit prediction of future
collisions. We show that the proposed specification
better describes human trajectories with respect to the
previous ones, and by a comparison between different
specifications, we also discuss some of the features that
a collision avoiding model needs to describe pedestrian
behaviour, at least at the low-density regime.

Social force model. – According to the social force
model of pedestrian motion, each pedestrian i tries to
move in a desired direction ei with a desired speed v

0
i

(i.e., with desired velocity v0i = v
0
i ei). The direction of

the desired velocity is given by a vector pointing from the
present position of the pedestrian ri to her next (sub)goal
gi, while the speed is the one at which the pedestrian feels
more comfortable to walk. The acceleration of the pedes-
trian is given by a social force term plus a fluctuation term

dvi(t)

dt
= fi(t) = f

s
i (t)+ ξi(t). (1)

Assuming that the deviations of pedestrians from the
straight path leading to their goal are only due to inter-
pedestrian collision avoiding interactions, and that the
pedestrian adapts her velocity to the desired one in a
relaxation time k−1i ,f

s
i is given by

fsi (t) = ki(v
0
i −vi(t))+

∑

j �=i
fi,j(t), (2)

where fi,j is the interaction force with pedestrian j.

Circular specification (CS). The circular specifica-
tion [20] assumes forces to depend only on the distance di,j
between pedestrians. This assumption works quite well
under high-density conditions as those occurring during
escape situations. The interaction force is

fi,j(t) =Ae
(d−di,j(t))/B di,j(t)

di,j(t)
, (3)

where A and B denote, respectively, the strength and
range of the interaction force, d is the sum of the “radii”
of the two pedestrians and di,j ≡ ri− rj .

Elliptical specification I (ES1). An elliptical specifi-
cation was proposed in [12]. The repulsive potential

Vi,j(bi,j) =ABe
−bi,j/B (4)

is introduced, whose equipotential lines have the form of
an ellipse with semi-minor axis bi,j defined by

2bi,j =
√

(di,j+ ‖ di,j −vjτ ‖)2− ‖ vjτ ‖2, (5)

where τ is the time of pedestrian stride. By derivation the
force is

fi,j(di,j ,vj) = Ae
−bi,j/B di,j+ ‖ di,j −yi,j ‖

4bi,j

×

(

di,j

di,j
+
di,j −yi,j
‖ di,j −yi,j ‖

)

, (6)

where

yi,j ≡ di,j −vjτ.

This specification takes in account not only the relative
distance, but also the movement of the other pedestrian.

Elliptical specification II (ES2). Another elliptical
specification was proposed in [16]. Now bi,j in (4) is defined
by

2bi,j =
√

(di,j+ ‖ di,j − (vj −vi)τ ‖)2− ‖ (vj −vi)τ ‖2,

(7)
i.e. by substitution of vj with vi,j ≡ vj −vi. The force is
then obtained by derivation of the potential substituting
in (6)

yi,j ≡ di,j − (vj −vi)τ,

This specification takes in account the relative positions
and velocities of pedestrians. It can be shown with thought
experiments [16] that this model describes a more realistic
collision avoiding behaviour than the circular one, at least
in the low-density regime.

New elliptical specification (NES). The new elliptical
specification was introduced in [19] in order to take in
account the absolute velocity, which has an influence in
pedestrian head-on interactions, assuming

2bi,j =

√

(di,j+ ‖ di,j − (vj −vi)τ ‖)2− ‖ (vj −vi)τ ‖2

1+ viτ
.

(8)
By derivation from the potential 4, we have

fi,j(di,j ,vi,j) =
Ae−bi,j/B√
1+viτ

di,j+‖di,j−yi,j‖
4bi,j

×
(

di,j
di,j
+

di,j−yi,j
‖di,j−yi,j‖

)

. (9)

Collision prediction (CP). These previous models
introduce social forces that reproduce the collision avoid-
ing behaviour of pedestrians, but do not use an explicit
computation of possible collisions. The elliptical specifica-
tions introduce the parameter τ as the time of a pedestrian
stride, assuming that the pedestrian will try to have some
free space for her motion. We believe that, even if at an
unconscious level, pedestrians have the ability to under-
stand the time at which a collision is probably going to
happen and to modify their motion in order to avoid it,
and that we could substitute τ with an explicit computa-
tion of this time in order to simplify the model removing
the parameter τ . In [21] a theoretical and experimental
analysis of the 1D fundamental diagram and of single lane
head-on collisions was performed, showing the necessity
to introduce foresight and non-additive interactions in the
social force model. Foresight was introduced as a linear
extrapolation of future positions at a fixed time τ , but a
full 2D model was not described. A model using a compu-
tation of future possible collisions has been introduced
in [22]. A similar model has been introduced in [23], and
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Fig. 1: (Colour on-line) Definition of ti,j , computed in i’s
reference frame. The projected distance at ti,j , denoted by d

′

i,j ,
will be the one used in the computation of fi,j only if ti,j = ti,
i.e. if it is the minimum over j. Otherwise the projected
position will be computed at a closer time, the distance will be
greater and the interaction lower and with a different direction.
For this reason forces in CP are not additive.

used for the study of collision avoiding behaviours from
an evolutionary point of view [24,25]. In its simplest form,
i.e. assuming straight motion in the computation of future
collisions, it is not computationally expensive and has been
used in large-scale pedestrian simulations [26,27].
The key concept of the model is that each pedestrian

will try to compute, for each approaching pedestrian in her
environment, the time in the future at which their relative
distance will be minimum, assuming straight motion. She
will then check for the minimum of these times, and
will predict the positions of herself and all the other
pedestrians at that point in the future. Interaction forces
will then be circular symmetric forces as those used in
CS, but based on this future situation, which is assumed
to be the most interesting for the pedestrian since it is
the first one in which a collision can happen. More in
detail, the force fi can still be written as in eq. (2), where
the interaction force is a function of relative positions and
velocities, and absolute velocity. If the angle between di,j
and vi,j , θi,j , is smaller than π/4 we compute the time ti,j
at which the pedestrians i and j will be closest, assuming
straight motion (see fig. 1) (a similar concept, even if in a
quite different model using synthetic vision, is introduced
in [28]). If |θi,j |>π/4 then ti,j =∞. This computation
is performed for each pedestrian j. We then compute
ti =minj{ti,j} and, assuming once again straight motion
at constant velocity, the projected future distances at time
ti,d

′
i,j(t) for each j (if ti =+∞ no interaction occurs). The

contribution of each j is then obtained as

fi,j({di,j}, {vi,j},vi) =A
vi
ti
e−di,j/B

d′i,j(ti)

d′i,j(ti)
. (10)

The term vi/ti introduces a dependence on individual
velocity assuming that the pedestrian wants to be
able to stop in ti, and thus for example in case of a
frontal collision her breaking strength should be of order
vi/ti. Some thought experiments show that this kind of
interaction prescribes a realistic and efficient collision
avoiding behaviour. For example, in the situation of an
interaction with almost perpendicular velocities, it leads

Fig. 2: (Colour on-line) Description of interaction with perpen-
dicular trajectories in CP and CS. Dashed circles are the
projected positions of pedestrians at the time of minimum
distance ti,j , that cause, in CP, pedestrians to accelerate with
the acceleration vectors denoted by the continuous arrows
(drawn both at the present time positions and at the predicted
positions). Acceleration vectors in the CS model are given by
dashed arrows.

the pedestrian who is closer to the crossing point to
accelerate, and the other one to decelerate (fig. 2). The
terms {di,j}, {vi,j} in (10) recall us that ti does not
depend only on a single pair di,j ,vi,j but on the whole set
{di,j}, {vi,j}. Thus this model, in opposition to the usual
specifications of the social force model, is not additive:
the interaction with a given pedestrian is modified by the
presence of the others.

Difference between the models. All the models used in
this paper take in account relative positions while CS is
the only model that does not use any velocity dependent
information. ES1 uses the opponent’s velocity to compute
interaction forces, while CP, ES2 and NES use relative
velocity. We expect these three models to outperform the
other models in a low-density environment in which non-
trivial collision avoiding behaviours are present, since the
relative velocity information is crucial to predict and avoid
collisions (see fig. 2). NES and CP use also information
coming from the pedestrian’s absolute velocity, which
should be useful in describing the head-on behaviour [19],
even if we don’t expect this information to be crucial in
the studied regime. The main difference between CP and
ES2-NES resides in the definition of the “collision time”
ti, i.e. the positions of all other pedestrians are computed
at a time interval computed on the run, on the basis of
all the other pedestrians’ positions and velocities, while in
the other two models the parameter τ plays a similar role
(at least according to our interpretation), but it is fixed
for all interactions. The use of ti also causes CP to be non-
additive (a detailed description of this mechanism can be
found in [24]). The computational cost is very similar in
all the models. In our implementations, that have no claim
to be optimal, CP resulted to be slightly slower than CS
and slightly quicker than elliptical specifications. During
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calibration, the simulation of 1.12 · 108 trajectories was
performed in 2299 s using CS, 2689 s using CP and 3590 s
using NES.

Anisotropy. Anisotropy depending on the angle ϕi,j
between vi and di,j is introduced in all the models
weighting the interaction force by a factor

w(ϕi,j) =
(

λ+(1−λ)
1+cos(ϕi,j)

2

)

, (11)

0≤ λ≤ 1,

as is usually done in the social force model [16].

Parameters. All the parameters in the model are
obtained by calibration using experimental trajectories. In
order not to increase too much the parameter space, only
the preferred velocity v0 will be considered as pedestrian
dependent, while the other parameters will be considered
as common to all pedestrians. For CP, the parameters are
v0, A, B, k, and λ. CS uses also the parameter d, while
elliptical models introduce the parameter τ .

Integration. The integration of the system of differ-
ential equations defined by (1) will be performed using an
Euler method, (whose time step will be Δt= 0.2 seconds,
i.e. the regular time step at which experimental pedestrian
trajectories are tracked). The use of an Euler integrator
allows us to interpret eq. (1) as the “cognitive dynam-
ics” of the system. Following this interpretation, at each
discrete time step, each pedestrian decides to modify her
velocity according to eq. (1) (in an impulsive way, i.e.
the velocity is suddenly modified and maintained until
the next interaction). If a physical dynamics is introduced
in the system, its time scale should be Δt′≪Δt. Later
we will show how we can introduce a simplified physical
dynamics that can be solved exactly in continuous time.

Calibration. –

Experiments. For calibration we use a set of pedes-
trian trajectories obtained in a controlled experiment
performed in our laboratory, in which 8 subjects took
part. Each subject was given a start and goal point, and
was prescribed to walk as naturally as possible towards
the goal. The trajectories of pedestrians were tracked
using laser range finders [18] in a square area with an 8
meters side (start and goal points were located outside
the area, but trajectories were tracked only when the
pedestrians were crossing the area). The tracked trajec-
tories were smoothed using a moving average approach
obtaining trajectories with a regular 0.2 second time
step. A total of 224 trajectories were obtained, 96 in an
experimental condition (C1) in which 4 pedestrians were
simultaneously present in the area, 128 in a condition
(C2) with 8 pedestrians. During these experiments, the
density in the area is around 0.1 persons per squared
meter, which corresponds to the possibility of walking
with a very comfortable speed [14]. Nevertheless, start
and goal points were chosen in order to put pedestrians
in a condition in which they have to solve a non-trivial

collision avoiding problem, avoiding other pedestrians
coming from different directions, but they can do it
without constraints due to severe physical density, which
is the situation we are interested to study in this work.

Calibration method. In the following we are going
to introduce a method based on genetic algorithms to
calibrate any collision avoiding model given a set of
trajectories that are supposed to be completely describable
using such a model. The model will be treated as a black
box that, given a set of parameters and the state of the
system (current positions and velocities of pedestrians)
gives the state at the next step (next-step positions
and velocities), and will be defined by the whole set
of parameters of the pedestrians. In order to make this
evolution deterministic and thus more easily testable we
will remove the stochastic term in eq. (1).
The solutions are evaluated on the basis of the similarity

of experimental trajectories and simulated trajectories
obtained using the same initial conditions. We will test
both the ability of the model to reproduce the behaviour of
a single pedestrian when the positions and velocities of the
others are given from the data, and its ability to simulate
all the pedestrians simultaneously. The second approach
allows us to introduce physical constraints, that lead to
a more effective collision avoiding behaviour that can be
safely used in simulations and practical applications.
Our fitness function has thus two terms. The first one

is more or less equivalent to the approach used in [15].
Our experimental knowledge of the system is given by the
set of trajectories {ri(tk)}, where i is an index running
over all the pedestrians recorded in the experiment, and
k over all the time steps at which these pedestrians have
been tracked. For each i we obtain the simulated trajectory
r′i imposing the initial condition r

′
i(tk0) = ri(tk0), keeping

fixed the positions and velocities of the other pedestrians.
In other words, r′i is obtained by having a single virtual
pedestrian interacting with the real pedestrians. The first
term of the fitness function is

F1 =
∑

i,k

‖ ri(tk)− r
′
i(tk) ‖

/

ND, (12)

where ND =
∑

i,k 1 is the number of points in the data set.
The meaning of this term of the fitness function is quite
clear, since by its optimisation we are trying to have simu-
lated pedestrian to behave as similar as possible to actual
pedestrians given the same environmental conditions. We
have nevertheless verified that using this approach, the
optimisation process leads to collision avoiding behav-
iours that are weaker than those of actual pedestrians,
i.e. after calibration simulated pedestrians pass closer
to each other than actual pedestrians do. We checked
the shortest distance attained by pedestrians during our
experiments, that resulted to be 2R= 0.6 meters, and
introduced a physical constraint to avoid pedestrians to
reach a shorter distance during simulations. We thus
defined a second fitness term, F2, in the following way. We
introduce a physical dynamics, assuming that pedestrians
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Table 1: Average best values of −F over 50GA runs for all
models and conditions, in millimetres.

All C1 C2 C1 on C2
CP 308± 10 216± 13 312± 16 302± 3
NES 352± 22 228± 15 358± 22 347± 4
ES2 362± 21 225± 14 365± 21 356± 5
ES1 413± 15 247± 29 440± 30 475± 7
CS 484± 39 357± 20 511± 34 546± 10

Table 2: Overall best values of −F over 50 GA runs for all
models and conditions, in millimetres.

All C1 C2 C1 on C2
CP 289 196 284 297
NES 306 208 319 341
ES2 324 204 329 348
ES1 392 218 410 466
CS 456 326 486 529

Table 3: Model parameters calibrated on all trajectories.

k λ A B τ , d

CP 1.52 s−1 0.29 1.13m/s2 71 cm
NES 1.19 s−1 0.08 1.33m/s2 34 cm 1.78 s
ES2 0.84 s−1 0.19 0.8m/s2 62 cm 1.74 s
ES1 3.2 s−1 0.58 9.2m/s2 44 cm 0.53 s
CS 4.9 s−1 1 10m/s2 34 cm 16 cm

can be described as 2D discs with radius R undergoing
elastic collisions. This is obviously not a realistic physical
dynamics for pedestrians, but can be solved in continu-
ous time [24] without an high computational cost, and
thus it is an efficient way to introduce physical constraints.
Furthermore, it provides a rigorous measure for collisions
between pedestrians, as the amount of physical momen-
tum exchanged in collisions. We will name r′′i a trajectory
obtained using this physical dynamics, in an environment
in which all the pedestrians are simultaneously simulated.
The second term of the fitness function is thus

F2 =−

(

βP +
∑

i,k

‖ ri(tk)− r
′′
i (tk) ‖

)

/

ND, (13)

where P =
∑

collisions |p| is the total amount of momentum
exchanged in collisions. Introducing the constant β = 1
(dimensionally time over mass, even if all masses are
assumed equal to 1 in the system) the system will minimise
the fictitious effect of physical collision in dynamics.
Assigning the same weight to the two terms the fitness

function will be
F = (F1+F2)/2 (14)

measuring the average distance of simulated and actual
trajectories under the two conditions.

Genetic algorithm. To calibrate and evaluate the
models and the roughness of their fitness landscape, we
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Fig. 3: (Colour on-line) Average fitness F , calibration over all
trajectories.
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Fig. 4: (Colour on-line) Average F , calibrated on C1 and tested
on C2.

use multiple GA runs. This is not necessarily the compu-
tationally optimal approach and other algorithms, as TD
learning, could be attempted in future. At the first gener-
ation each gene, coded as a real (double precision float-
ing point) number, is randomly chosen using a uniform
distribution in a reasonable range, obtaining 500 different
genomes. Each genome in a new generation is obtained
by crossover of two genomes selected using tournament
selection (5 genomes are randomly chosen, and the one
with highest fitness is selected), and then mutated with
Gaussian error and probability 0.1. For each calibration
test we performed 50 different runs, each run lasting 1000
generations.

Results and discussion. – We calibrated models
on all the trajectories (All), only on trajectories from
condition C1 and only on trajectories from condition C2.
We also tested the model calibrated on C1 to see how
it works on C2 trajectories. The results for average (and
standard deviation) of best solutions over all the GA runs,
and best overall solutions are shown in tables 1 and 2.
These results show a clear performance hierarchy between
models, with CP having the maximum fitness, followed by
NES-ES2, ES1 and CS. The average fitness evolution for
calibration over all trajectories is shown if fig. 3, while the
average fitness evolution for solutions calibrated on C1 and
tested on C2 is shown in fig. 4. The values of calibrated
parameters (best solution, calibrated on both conditions)
are shown in table 3.
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Our results show that introducing an explicit compu-
tation of collisions in the social force model improves the
capability of the model to reproduce pedestrian trajecto-
ries. The differences between CP and ES2-NES were statis-
tically significant under all conditions, having CP outper-
forming the other two models around 5% on trajectories
with four pedestrians, and around 15% on trajectories
with 8 pedestrians or on all trajectories. When tested after
calibration, CP outperformed the other models around
15%. The difference between the models is due probably to
the fact that both CP and ES2-NES take in consideration
the future situation, but while ES2-NES do it at a fixed
time step τ , CP explicitly computes the time of the prob-
able collision. Furthermore CP does it in a non-additive
way, introducing some kind of priority in the interac-
tion between different neighbouring pedestrians. The new
model seems particularly successful in describing the more
complex situation in which 8 pedestrians are present. The
value of τ ≈ 1.7 s for ES2-NES suggests that this para-
meter, more than for the length of the stride, accounts
for the time to a next collision (interaction with a pedes-
trian located at a few meters of distance) and thus an
explicit introduction of this computation seems reason-
able. The fitness mean square deviation always assumes
the minimum value in CP under all calibration conditions,
suggesting that the reduction of the number of parame-
ters resulted in a smoother fitness landscape and that CP
needs less to be “fine tuned” than the other models. No
significant difference is found between ES and NES, as
predictable since in a situation in which the density is quite
low and pedestrians have different starting and goal points
there should be no need to describe the head-on behaviour
of pedestrians walking in the same direction. Neverthe-
less these two models significantly outperform ES1 and
even more CS, showing the need to take in account the
future position of pedestrians in computing the interac-
tion forces, in particular in the low-density regime. These
models were particularly poor when dealing with physical
constraint (F1 =−0.380 and F2 =−0.533 for CS best solu-
tion in contrast to F1 =−0.269 and F2 =−0.309 for CP)
showing their difficulty in reproducing actual trajectories
while avoiding collisions.

Conclusions. – We believe that our results show
that an explicit computation of collision times improves
the description of local pedestrian motion, allowing for
a precision smaller than the size of the human body,
at least on the small scale considered. Furthermore the
proposed model has less parameters to be calibrated than
the previous models, substituting the constant τ with
the computed collision time. Our results also show the
necessity to take in account relative velocity of pedestrians
in low-density collision avoiding. Future developments
regard the study of the performance of the proposed model
at higher densities, and the introduction of a non-circular
interaction force that takes in account the actual shape of
the human body.
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