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Abstract

In this work we tackle the statistical study and modelling of the usage
of space by pedestrians in a real world environment. A large amount of
pedestrian trajectories is collected in a corridor used just as a transition
place, and the density and velocity distributions are analysed as functions
of the distance from the walls. The empirical data are fitted to a model
assuming the density and velocity to be determined through a Boltzmann
factor by a comfort function depending on the distance from the walls and
assuming a maximum on the left side of the corridor (Japanese traffic con-
vention). The empirical data are then compared to numerical simulations
using pure collision avoidance models, to better analyse the influence of
the environment on the pedestrian distribution and to investigate how to
introduce in collision avoiding the bias that makes people walk preferen-
tially on a given side of a corridor.

1 Introduction

There is still a gap in pedestrian studies between analyses based on controlled
experiments [1] and real world data collection [2]. The former are performed
in very simple environments, data are recorded with high precision and usually
allow for an effective modelling of the results and comparison with simulations.
Nevertheless these experiments may deviate strongly from real world behaviour,
both for the artificial nature of the environments in which they are performed,
and for the unnatural behaviour that subjects may exhibit. On the opposite real
world data collection presents lower data quality, and real world environments
are usually too complex to allow mathematical analysis and modelling, making
a generalisation of the obtained information very difficult.
This work is an attempt to create a bridge between these two approaches,
analysing pedestrian behaviour in a real world environment which is simple
enough to be described with a mathematical model. We study the density and
velocity patterns of pedestrians in corridors used only as transition places, check-
ing that these quantities depend only on the distance from the walls. In Japan,
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where data were collected, people walk on the left side of corridors [2], and our
analysis, that divides them according to their walking direction, confirms this
tendency. We found that the pedestrian density in each flow goes to zero close
to the walls, and assumes a maximum in a point closer to the left wall than to
the right one. The pedestrian velocity does not change more than 10% from the
minimum value, assumed close to the walls, to the maximum, located on the
right of the density maximum.
We model the data assuming that the pedestrian density distribution is given
by a Boltzmann factor, whose “Hamiltonian” is a (dis)comfort function, assum-
ing a minimum value where pedestrians can walk more easily. We also model
the velocity distribution as a Gaussian centred around a preferred value that
depends on the distance from the walls.
Pure collision avoiding behaviour leads to emergent self-organisation [1], and it
has been proposed that a bias in the perceived position of other pedestrians may
be a way to account for the (culture dependent) tendency to walk on a given
side of a corridor [3]. We use computer simulations to understand to which
extent the observed position and velocity distributions may be obtained using
a pure collision avoiding model.

2 Environment

The purpose of this work is to study the behaviour of pedestrians in a real
world environment with a simple geometry. Ideally, we would like to study a
uniform corridor used just as a transition place, and since such an environment
is expected to be invariant along the direction of the corridor, we want to study
the density and velocity dependence on the only distance from the walls. We
expect two flows to be present, i.e. identifying the x axis of the Cartesian system
with the direction of the corridor, one flow will be given by pedestrians with a
positive x component velocity, vx > 0, the other by pedestrians with vx < 0.
As an approximation to this ideal environment we studied an underground area
in Umeda (Osaka) where some corridors connect a shopping area with a railway
station. These corridors are quite uniform, without any shop, and used almost
only by people transiting between the station and the shopping area, and thus
their structure is quite similar to the ideal one. The pedestrian positions were
recorded in two working day afternoons using 2D laser range finders, a tech-
nology that allows for tracking with an error of order 60 mm [4]. The tracked
trajectories were smoothed in a time window δt = 200 ms, and the velocity
obtained from the smoothed trajectories as vi(t) = (xi(t+ 2δt)− xi(t))/(2δt).

3 Observables

We divide the environment in 2D cells of size ∆ = 0.25 m and area A = ∆2, and
record in each cell and for each time step the number of pedestrians detected and
their velocity. Assuming the observation to be performed on a time span ∆t,
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the number of time instants at which data are recorded is given by T = ∆t/δt.
Let us assume Nk pedestrian positions to be recorded on cell k, and {vi} with
1 ≤ i ≤ Nk to be set of their velocities. Based on these microscopic observables,
it is straightforward to define the macroscopic density ρ on k as

ρk = Nk /(TA ) (1)

The macroscopic vectorial velocity and speed are

V k =

Nk
∑

i=1

vi

/

Nk Vk =

Nk
∑

i=1

|vi|

/

Nk (2)

In principle Vk 6= |V k|. After fixing the orientation of our Cartesian system, we
divide the pedestrian velocities in two sets,

P+ = {vi|v
x
i > 0} P− = {vi|v

x
i < 0}

respectively with cardinalities N+
k and N−

k , and define

ρ+k = N+
k /(TA ) ρ−k = N−

k /(TA ) (3)
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3.0.1 Data filtering

We recorded data in two different corridors connecting the shopping area to the
station (environments E1 and E2, fig. 1). Both recording campaigns lasted
around 6 hours (≈ 105 time recordings). In E1 we tracked 17188 pedestrians
(≈ 1.8 · 106 recordings) while in E2 we tracked 11124 pedestrians (≈ 1.1 · 106

events). Fig. 2a shows the v = |v| distribution (as total number of events in a
5 mm/s histogram) in E1. The empirical distribution can be described as the
sum of a Gaussian distribution (pedestrians walking along the corridor) plus
a Rayleigh distribution (standing pedestrians assuming white Normal noise in
their x, y position recordings). We find, by best-fit, for the Gaussian veloc-
ity distribution σG = 270 mm/s and µ = 1260 mm/s in E1, σG = 260 mm/s
and µ = 1250 mm/s in E2. For the Rayleigh distributions, we have σR = 44
mm/s in E1, σR = 28 mm/s in E2. Assuming also the Gaussian distribution
of moving pedestrian velocities to be affected by noise with intensity ≈ σR, we
expect the estimation of σG not to be strongly affected by noise. Let us assume
σR/σG ≈ 1/5, and the observed velocity distribution to be given by the sum
of two stochastic Gaussian processes, the actual velocity distribution plus the
random noise. It follows for the “true” value σT = (σ2

G − σ2
R)

1
2 ≈ 49/50σG.
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(a) (b)

Figure 1: ρk for pedestrians with |v| > 500 mm/s in E1 (a) and E2 (b). Red
corresponds to ρ = 0, yellow to low ρ, violet to high ρ. E1 measures 60× 12 m,
E2 52× 17 m.
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Figure 2: a) velocity distribution (black) in E1 compared to the best-fit to a
model assuming the sum of a Gaussian plus a Rayleigh distribution (red). b)
Average velocity distribution (black) in E1 compared to the best-fit to the same
model as in a). c) Black line, velocity distribution in E1a before filtering as in
eq. (6). Red line, after filtering.
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(a) (b)

Figure 3: ρk in the “ideal corridors” E1a (a, 22× 7 m) and E2a (b, 10× 6 m).

Fig. 2b shows the empirical and best fitted distribution for average pedestrian
velocities (i.e. the average value of v for each pedestrian over the tracked tra-
jectory). We obtain σG = 200 mm/s, µ = 1280 mm/s for both E1 and E2.
Both environments present a larger corridor crossed by a smaller one on the left
(fig. 1). On the right we observe areas in which the flow of pedestrians gets
narrower, due to the presence of columns. In the central portion, the pedestrian
density is almost invariant along the x axis, i.e. the environment corresponds to
our definition of ideal corridor. We consider in our analysis only these portions
(shown in fig. 3 and denoted as E1a and E2a). By doing this we remove the
portions in which the members of our staff, responsible for the largest part of
the resting pedestrians peaks, were present. To further remove from our anal-
ysis standing pedestrians or pedestrians not behaving as commuters along the
corridor, we filter our data keeping only velocities that satisfy

|vx|/|vy| > 3 |v| > 500 mm/s (6)

(from now on, the observables in eqs. (1-5) will be computed only for pedestrians
satisfying eq. (6)). Our corridors can be considered close to be ideal only if
the amount of data removed by filtering (6) is negligible. Fig. 2c shows the
velocity distributions of pedestrians in E1a, before and after filtering. 8497
pedestrians are tracked in E1a, corresponding to ≈ 6 · 105 events (≈ 5.5 · 105

after filtering) while 4586 pedestrians are tracked in E1b (≈ 1.5 ·105, ≈ 1.35 ·105

after filtering). We also clipped the areas corresponding to the small corridors
on the left of fig. 1, and, after a proper rotation of the axes, filtered the data
using eq. (6) (environments E1b and E2b). These environments are far from
being ideal corridors (in E1b 1.0 · 105 events over 2.3 · 105 remain after filtering,
12452 pedestrians; 1.5 ·105 events over 2.5 ·105, 8751 pedestrians in E2b). Even
if the amount of filtered data is large, since the density of pedestrians is low and
inter pedestrians interactions are scarce, we assume the behaviour of filtered
pedestrians to be close to the ideal one. E1b measures 12× 4 m and E2b 17× 4
m.

4 Empirical data

We integrate filtered data on the x direction to obtain 1D observables depending
only on the distance from one of the walls, y. We notice the presence of an area,
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Figure 4: Comparison between the original data (continuous histogram) and
their smoothed versions (dashed line) for ρ+(y) (blue) and ρ−(y) (red). a) E1a;
b) E2a. The axes are chosen in such a way that the Japanese traffic condition
corresponds to have the P− flow on the left.

whose size is around 500 mm, in which ρ is much lower (see also fig. 3), corre-
sponding to the location of tactile paving for the visually impaired, omnipresent
in Japan. Since walking on these areas is uncomfortable, their presence causes
a fluctuation in the density patterns. To simplify our analysis we will consider
data smoothed with a filter of length higher than 500 mm, which removes almost
completely their effect. Fig. 4 shows a comparison between the ρ± distributions
in E1a and E2a and their smoothed versions. The empirical data show clearly
the presence of two distinct flows, since ρ− presents a single peak located on the
left, while ρ+ presents a single peak located on the right. Density drops to zero
close to the walls, and decreases quickly far from the maximum, until reaching
an almost constant value. The V± and V

±

x distributions (not shown) are convex
functions assuming a maximum in the centre of the corridor and minima close
to the walls, with differences between the maximum and the minima around
10%. The maximum is close to the centre of the corridor, i.e. on the right of
the the ρ maximum, suggesting a tendency to overcome on the right.
The analysed environments do not show enough variation in time to justify a
time dependent analysis, and thus we will just perform a time-integrated analy-
sis in order to use the maximum amount of data available. The stability in time
of the observed patters suggests that they represent some sort of equilibrium
state that does not change significantly during the day and it is stable to the
small density fluctuations observed in the environment.

5 Model

The empirical data present in every environment the separation between the two
flows, together with a clear dependence of the density and velocity patterns on
the distance from the walls. The observed environments do not present a wide
variation nor in width (7.25 m in E1a, 6.5 m in E2a, 4 m in E1b and E2b),
average density (0.033 ped/m2 in E1a, ≈ 0.02 elsewhere) or relative density
between the flows (≈ 1 everywhere), nevertheless the similar shape and stabil-
ity suggest some “universality” in the empirical distributions. We are going to
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develop a model to describe these distributions, a model that is intrinsically em-
pirical, since it is not derived by first principles about the pedestrian behaviour,
but only as a function that tries to describe the observed distributions. Never-
theless, since these patterns arise from the behaviour of individual pedestrians,
in describing the (macroscopic) empirical distributions, we will try to create
a connection with the individual behaviour. We will assume that the pedes-
trian feels more or less (un)comfortable according to the position and velocity
he has (this comfort depending also on the expectation of finding pedestrians
walking in the opposite direction), and that this (dis)comfort can be expressed
through an “Hamiltonian” function. The term Hamiltonian is used here because
we make the hypothesis that, as in statistical mechanics, the microscopic be-
haviour and macroscopic observables are connected through a Boltzmann factor,
i.e. the probability of observing pedestrians with given velocity and position is
determined by a negative exponential of the Hamiltonian.

5.0.2 Density model

Denoting with 0 < y < L the distance of the pedestrian from one of the walls,
we introduce an energy (or a (dis)comfort) function

U(y) =
a

y
+

a

L− y
+

(

δ

bL

)2

δ =

{

y − cL if |y − cL| < dL
dL if |y − cL| ≥ dL

(7)
U(y) assumes a minimum (maximum comfort) in cL, while it increases (in a
bounded way) with the distance from cL and diverges on the walls. Assuming
that the probability distribution of pedestrians is given by a Boltzmann factor

p(y) ∝ e−U(y) (8)

we expect results in good agreement with the ρ distribution in our data, since
eqs. (7-8) describe a function that behaves as a Gaussian close to its maximum,
drops to zero on the walls and reaches a constant value far enough from the
walls and the maximum. Parameter c accounts for the maximum position, a
regulates the distance to walls, b the width of the flow, while d is introduced to
explain the finite probability of walking on the “wrong” side of the corridor.
Using environment and flow specific parameters, the best fits of eqs. (7-8) de-
scribe very well the empirical data (figure 5). To check the universality of the
proposed law, it is more interesting to see to which extent the same parameters
can describe all environments and ρ± distributions (overall 8 density distribu-
tions). To avoid an over-fitting problem, we fixed a = 300 mm (which is very
close to the value we found when we fitted the model to single curves, and is
easily understandable as a tendency to maintain a distance from walls of the or-
der of the human body size), and found the best fitted parameters to be b=0.40,
c = 0.28, d = 1.1. The best fit curves are shown in fig. 6. Even if there is clearly
a difference between the description of the larger (E1a and E2a) and smaller
(E1b and E2b) environments, the model appears to be quite general.
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Figure 5: Best fit of ρ± in: a) E1a; b) E2a; c) E1b.
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Figure 6: Comparison between the ρ± distributions and the best fits of eq. (8)
using a = 300 mm, b=0.40, c = 0.28, d = 1.1. a) E1a; b) E2a; c) E1b.
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Figure 7: v0(y) for P
+ (blue) and P− (red). a) E1a; b) E2a; c) E1b.

5.0.3 Velocity model

To generalise our (dis)comfort function to the velocity space, we must obtain
velocity distributions as those shown in fig. 2 for different points of the corridor
(i.e., values of y). The original discretisation using ∆ = 250 mm was too refined
to have a significant statistics, so we divide each corridor in 5 lanes of width
L/5 and obtain the velocity distribution for each lane (we use 5 lanes on the
basis of the information obtained in the previous section, since the maximum
of the density for each flow should be located in the centre of the second lane
from left if c ≈ 0.3). As reported in literature [2] and in fig. 2, the pedestrian
velocity can be described with good approximation by a Gaussian function.
According to this, we may extend the “Hamiltonian” for our pedestrian system
introducing a quadratic term in the velocity, which takes in account the fact
that our pedestrians have a preferred velocity directed along the corridor. We
can assume the maximum of the Gaussian as given by a parameter v0 depending
on y, and extend eq. (7) as

H(y,v) = U(y) + T (y,v) T (y,v) =
(vx − v0(y))

2

2σ2
x

+
(vy)2

2σ2
y

(9)

v0 is the pedestrians’ preferred velocity, directed along the corridor (the macro-
scopic velocity distribution in y will be given by the negative exponential of T ,
as for eq. (8)). In eq. (9) we have considered the possibility that the spread
in velocity along and orthogonal to the corridor may be different. We calibrate
Gaussian distributions to each vx and vy distribution in all lanes to obtain the
v0, σx and σy parameters of eq. (9), whose values are shown in table 1 and
figure 7. With the exception of P− in E2a, all data show a tendency to have
maximum velocity on the right of the ρ maximum cL. We notice that σx > σy,
due to the fact that while σy includes only deviations from the preferred ve-
locity (since for all pedestrians vy0 = 0) σx includes also individual variation in
vx0 , which can be estimated to have a standard deviation around 200 mm/s (fig.
2b). Assuming the individual variation to be ≈ 150 mm/s as for vy0 , the overall
deviation for vx0 should be ≈ 250 mm/s, in agreement with the data).
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Table 1: Parameters calibrated using a best fit method. v0 and σ in mm/s.

E1a v+0 σ+
x σ+

y v−0 σ−
x σ−

y

1 1233 275 171 1237 255 156
2 1259 255 186 1267 252 158
3 1283 265 171 1288 250 160
4 1264 259 159 1291 263 167
5 1226 259 158 1218 280 163

E2a v+0 σ+
x σ+

y v−0 σ−
x σ−

y

1 1172 252 160 1264 250 157
2 1229 257 177 1275 254 164
3 1271 254 174 1262 250 174
4 1250 249 164 1266 225 170
5 1218 238 163 1245 274 155

E1b v+0 σ+
x σ+

y v−0 σ−
x σ−

y

1 1201 350 223 1212 313 170
2 1262 314 224 1267 299 194
3 1301 286 181 1277 283 182
4 1281 280 183 1243 308 204
5 1217 286 202 1206 318 226

E2b v+0 σ+
x σ+

y v−0 σ−
x σ−

y

1 1203 313 207 1228 269 197
2 1253 272 229 1265 255 211
3 1260 260 215 1264 265 208
4 1260 256 208 1267 263 223
5 1239 266 207 1202 290 223

6 Simulations

Microscopic collision avoiding behaviour is known to give rise to pedestrian
organisation in lanes [1, 3]. Even if a realistic collision avoiding behaviour could
hardly generate an organised pattern in the small environments and at the low
densities observed in this work, these environments are part of a pedestrian area
that may be large enough to generate such patterns even at low densities. In
this section we use numerical simulations to investigate this possibility.

6.0.4 Collision avoiding models

In simulations we use a corridor with periodic boundary conditions and study the
equilibrium distributions as density and velocity patterns that appear to be sta-
ble on the time scale relevant for pedestrian studies (103-104 s). In our paper [5]
we investigated the extension and calibration of the Social Force Model (SFM)
to describe low pedestrian densities, and verified that the Elliptical specifications
using relative velocities [6] are those that better describe low densities, provided
that a large enough parameter τ is used. In the original work this parameter
was presented as the time length of a stride (≈ 0.5 seconds) but our calibration
suggested a value close to 2 seconds to describe low densities. We hypothesised
that τ actually represents the average time to the next collision, and proposed
a new specification, called Collision Prediction, that explicitly computes such
time (more precisely, the time to the maximum approach between pedestrians).
This specification outperformed the Elliptical specifications at low density, and
does not need tuning τ to be used at different densities. In this section we use
the Elliptical Specification 2 (ES) and Collision Prediction (CP) models as de-
scribed in [5]. We introduced a modification to CP as a maximum and minimum
value for the time to the next collision (ti in [5]), i.e. ∆t ≤ ti ≤ tmax, where ∆t
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is the integration time of the method (0.2 seconds in this paper), while tmax is
a new parameter. The introduction of these constraints is not relevant to the
current work, but it is useful to extend CP to higher densities and to more re-
alistic simulations. Since in CP the force of the pedestrian is modulated by the
term vi/ti, i.e. it is strong enough to stop in ti, ti ≥ ∆t is an obvious request for
numerical stability (it disappears in the continuous limit). The tmax constraint
is useful to describe pedestrians walking in the same direction at similar speeds
and it is important to describe, for example, the fundamental diagram using
our method.
The interaction with the walls is realised in ES through a velocity independent
repulsion force (as in the original Circular Specification of the SFM, [6]), while
in CP the collision time to the walls is explicitly computed in the same way as
it is for pedestrians (in both methods the values of the parameters for the in-
teraction with walls are possibly different from the pedestrian interaction ones).
Furthermore we introduce in both methods a maximum distance of interaction,
rI , to reduce possible interaction effects between pedestrians in different lanes,
which seem unrealistic and could represent a difficulty in obtaining the empirical
distributions. We notice that in the CP specification this limit can be introduced
in an elegant way as acting on the predicted distance at the time of collision,
i.e. it is realised as a ”cognitive process” more than a limit in perception.

6.0.5 Cultural bias

Being symmetrical, the models in [5] cannot describe the cultural bias that
leads Japanese people to walk on the left side of the corridor. By simplifying
the model proposed in [3], we can introduce such a bias tilting the perceived
relative position of other pedestrians. While this bias could describe well the
observed lane formation, we don’t expect it to describe the observed velocity
distribution, since, as shown in fig. 8, it leads not only to avoiding on the left,
but also to overcome on the left. We thus propose also a different mechanism,
based on rotating not the relative position but the other pedestrian’s velocity,
which should lead to avoiding on the left while overcoming on the right, see fig.
8. This rotation corresponds to the expectation that the “opponent” applies the
same cultural bias avoiding on the left or moving to the left if walking slower.
We refer to the position tilt bias as TP, while to the velocity one as TV, and
notice that the left-side bias of Japanese walkers is obtained by rotating position
of a clockwise angle θt in TP, while it is obtained using a counter clockwise angle,
−θt, in TV. For overcoming to work properly in TV as used in this paper the
pedestrian on the front should interact weakly (λ ≈ 1, [6]), while a possible
improvement in TV could be to multiply the tilt perceived by pedestrian i by
(dji · vi)/(|dji||vi|) to obtain a more realistic behaviour in any setting.

6.0.6 Noise

We calibrated models in [5] assuming them to be deterministic, i.e. virtual
pedestrians always behave in the same way given the same stimulus. Obviously

11



θ θ

−θ

θ−

Figure 8: Tilting the perceived position with respect to the real one leads to a
bias towards left in both avoiding and overcoming, while tilting the perceived
velocity leads to avoiding on the left while overcoming on the right.

this is not true for real pedestrians, who have limited precision perception capa-
bilities and arbitrary response. A good deterministic pedestrian model should
provide the average behaviour, while the complex mechanism that leads to the
richness of human response can be (statistically) approximated adding the right
amount of noise to the model output. To estimate the amount of noise neces-
sary to reproduce the variety of human behaviour, we first ran simulations using
the parameter values of [5], assuming the preferred velocity distribution to be
centred in 1.28 m/s with deviation 0.2 m/s (see fig. 2b). The resulting standard
deviations in velocity distributions were σx ≈ 0.2 and σy ≈ 0.03, much lower
than the observed ones (table 1). To obtain values similar to the empirical ones,
we added in all simulations to both components of the models’ velocity output
a Gaussian white noise with standard deviation 0.12 m/s.

6.0.7 Calibration

Our calibration process consists in simulating environments E1a, E2a and E1b
at the observed densities and to find the parameters that better describe the ob-
served distributions (we omit E2b due to its similarity with E1b). In calibration
we allow the collision avoiding parameters to assume stronger values than in [5],
since in that paper we didn’t use noise, and freely calibrate the wall interaction
parameters and other parameters not calibrated in the previous work. For simu-
lations, we use 3 different binary conditions, resulting in 8 possible settings: the
model condition (ES or CP), the bias condition (TP or TV) and the interaction
with wall condition (W0, no interaction with walls, and W1). We introduce this
latter condition to differentiate between the distribution given just by collision
avoiding between pedestrians and the effect of walls which is to some extent
“environmental”. To calibrate parameters we use a genetic algorithm, with 30
generations and 30 genomes. Each genome (possible solution) is tested on all 3
environments 100 times. Each repetition lasts 5000 seconds, and the “equilib-
rium distribution” is defined as the average density distribution in the last 2500
seconds, averaged over all repetitions. All repetitions use the same number of
pedestrians, chosen in such a way that the overall density (sum of the two direc-
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Figure 9: Comparison between the simulated distributions using different meth-
ods and conditions. Continuous: CP, TV, W1. Dotted: CP, TV, W0. Dashed:
CP, TP, W1. Dash-dotted: ES, TV, W1. a) E1a; b) E2a; c) E1b.

tions) in each environment is always equal to the experimental average density
in each environment. Nevertheless, the number of pedestrians in each direction
is chosen in a probabilistic way, such that the average density over repetitions
in each direction approaches the observed one, but the number of pedestrian
for each direction present at any given time may be different (which is a more
realistic setting that using always a balanced distribution). We run the GA 8
times for each condition, and for each best solution (i.e. the best solution for
each condition over the 8 runs) we perform a test on 1000 repetitions to obtain
better statistical significance. This test is performed also using repetitions of
length 10000 seconds, to check the stability of the simulated distribution. The
fitness function was defined as follows. Let ρ±i (j∆)s be the simulated density
distribution in environment i (1 stands for E1a, 2 for E2a and 3 for E1b) and
ρ±i (j∆)e the experimental one, < ρ±i > the average density and Li the width of
the 3 environments; the fitness, a mean square distance weighted in such a way
that all environments, regardless of size and density, contribute the same, is

F =

√

√

√

√

√





∑

i=1,3;k=±





∑

j

(

ρki (j∆)s − ρki (j∆)e

< ρki >

)2




/

Li

∆





/

6 (10)

This fitness function, taking in account only the density distributions, was used
also to calibrate the model (8), for which we obtained as a best solution 0.248.
Once the parameters that best fit the density distribution are found, the velocity
distribution generated by these parameters is tested.

6.0.8 Results

Table 2 shows the values of F and θt under different conditions, while figs.
9 and 10 compare some of the best solutions between themselves and with
observed and theoretical curves. Solutions resulted to be very stable under
the increase of simulation time from 5000 to 10000 seconds, i.e. they describe
an “equilibrium distribution” at the time scales of interest. Table 2 shows
that under condition W1 the simulations achieve a quantitative performance
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Table 2: F and θt for different methods and conditions after calibration (average
and standard deviation are over different GA repetitions).

ES TV W0 TV W1 TP W0 TP W1
Average F 0.4562± 0.0008 0.2305± 0.006 0.4654± 0.005 0.2495± 0.007
Best F 0.4546 0.2210 0.4572 0.2377

Average θt −0.290± 0.016 −0.281± 0.022 0.139± 0.030 0.112± 0.047

CP TV W0 TV W1 TP W0 TP W1
Average F 0.4251± 0.002 0.2304± 0.021 0.4428± 0.011 0.2630± 0.020
Best F 0.4218 0.2073 0.4278 0.2335

Average θt −0.221± 0.099 −0.137± 0.106 0.038± 0.022 0.042± 0.030

0 2 4 60

0.015

0.03

a)

y(m)

ρ (
p/

m
 )2

0 2 4 60

0.01

0.02

y(m)

ρ (
p/

m
 )2

b)

0 1 2 3 40

0.01

0.02

y(m)
ρ

(p
/m

 )2

c)

Figure 10: Comparison between the empirical distributions (continuous), the
simulated ones (dotted) and the theoretical ones (dashed). For simulated densi-
ties, we show the overall best simulation (CP,TV,W1). a) E1a; b) E2a; c) E1b.
P+ in blue, P− in red.

similar to that of the theoretical model, even outperforming it under the TV
condition. From a qualitative point of view, the simulated distributions have
problems in describing both large spreads around peaks and relatively high
density corresponding to the location of the other flow’s peak. The difference
between W0 and W1 (table 2 and fig. 10) conditions shows the importance of
the interaction with walls in obtaining a distribution with a significant spread
around a peak at a significant distance from the wall. This means that this
pattern can be obtained only by introducing some kind of environmental effect,
since only collision avoiding leads, at these low densities, to the formation of
lanes very close to the walls. There is also a weaker but clear tendency of TV
to outperform TP, which is once again (figure 10) given by a better ability of
describing the position and spread of the peak. This effect is probably due to
the tendency of faster pedestrians to walk closer to the middle of the corridor
in TV.
Both in ES and CP the best solutions had low values of rI , probably to reduce
the interaction between the two lanes. While in ES rI represents a limit for
the pedestrians’ perception, and thus it cannot be set to values smaller than
a few meters (we used 4 m as a limit in our calibrations), in CP it can be
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Figure 11: Average values of vx for P− under W1, compared to the results of
fig. 7 (black, triangles). Red, circles and continuous: CP, TV. Blue, squares and
dotted: CP, TP. Green, diamonds and dashed: ES, TV. Orange, crosses and dot-
dashed: ES, TP. a) E1a; b) E2a; c) E3 (virtual environment, no experimental
data).

set to values close to the size of the human body (or of their social space) to
discriminate between behaviours leading to actual collisions or just approaching
behaviours that cannot cause collisions [7]. The other parameters did not seem
to be relevant for the problem under study.

6.0.9 Velocity

The velocity distributions for best solutions under all conditions present values
of σx between 0.25 and 0.3 m/s and of σy between 0.15 and 0.23 m/s, in good
agreement with the values in table 1. Fig. 11 shows the average value of vx in
different “lanes” (defined as and compared to the results of fig. 7) in P− under
W1. In E1b there is almost no qualitative difference between the TV and TP
conditions, while there is a clear difference between CP and ES , since the latter
describes a flat distribution over the corridor. Our hypothesis is that at this low
density overcoming occurs very seldom and the mechanism described in fig. 8
does not produce macroscopic effects, while the difference between CP and ES
is due to the fact that the former uses a velocity dependent interaction with the
walls, and thus the quickest pedestrians have a tendency to stay farther from the
walls. In E1a, due to the higher density (< ρ >≈ 0.021 in E1b, < ρ >≈ 0.033
in E1a) and larger size (i.e. more overcoming and less influence from walls) the
difference between TV and TP is more clear. To further test this hypothesis
we simulate also virtual environment E3 (< ρ >≈ 0.09, L = 10) in which the
macroscopic effect of the different bias conditions is evident. We expect the
differences between the experimental data and the TV condition to be solved
with the proposed enhancement θ′t = θt(dji · vi)/(|dji||vi|) .

7 Discussion and conclusions

Simulations based on collision avoiding reproduce quite well the observed den-
sity distributions, even if the “environmental” role played by interaction with
walls is important in the attainment of such a task. Also the tendency of faster
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pedestrians to walk in the middle of the corridor can be obtained using a proper
velocity dependent interaction with the walls. The values of the bias θt was
much higher than the one reported in [3]. This could be due to the fact that
they observed an artificial environment in which such a bias is not necessary, and
also could be related to the fact that this bias is particularly strong in Japanese
culture. Nevertheless such a strong value could be unrealistic, suggesting that
the observed patterns cannot be obtained by using pure collision avoiding. We
leave for future work the comparison between the microscopic behaviour of real
and simulated pedestrians to clarify this point.
If pedestrians have, as we suggested, a tendency to overcome on the right, this
can be simulated by using TV, while TP could lead to unrealistic behaviours,
in particular at high densities where overcoming happens more often.
Based on these results, we believe that a pure collision avoiding behaviour us-
ing the TV bias (with values of θt lower than those reported in this paper)
could describe properly the behaviour of pedestrians in (relatively) high density
corridors, while at low density their distribution is given by a non emergent
behaviour that can be expressed using eq. (7). The fact that a strong bias leads
to distributions similar to those described by eq. (8) suggests according to us
that the pedestrians use at low density a behaviour similar to the one that they
“have learnt” at higher ones (see also figs. 7 and 11, walking with high velocity
on the right is probably necessary only at high densities, but pedestrians have
this tendency also at low ones). To clarify these points we want to collect data
at different densities and compare microscopic and macroscopic behaviours to
better understand the consistency of the θt values. We expect the microscopic
bias values to be compatible with the observed macroscopic patterns only at
densities considerably higher than those observed in this work.
The model (8) may be used as a boundary condition for the simulation of more
complex environments, assuming for example that if pedestrians are entering
the environment from some kind of corridor, the given distribution can be con-
sidered as the spatial distribution of entering pedestrians, supposing no further
knowledge is available. From a microscopic point of view, this function could
be seen as “the external potential” acting on the pedestrian (influence of the
environment) and thus the force perceived by the pedestrians from the environ-
ment could be modelled as the negative gradient of U .
We also plan to observe the effect of group behaviour on simulations.
Acknowledgements This work was supported by JST, CREST.
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[3] M. Moussäıd, D. Helbing, S. Garnier, A. Johansson, M. Combe and G.
Theraulaz, Experimental study of the behavioural mechanisms underlying

self-organizaion in human crowds, Proc. Roy. Soc. B: Biological Sciences,
276, 1668, 2755-2762, (2009)

[4] D.F. Glas, T. Miyashita, H. Ishiguro, N. Hagita, Laser-Based Tracking of

Human Position and Orientation Using Parametric Shape Modeling, Ad-
vanced Robotics, 23 (4), 405-428 (2009)

[5] F. Zanlungo, T. Ikeda and T. Kanda, Social Force Model with explicit col-

lision prediction, Europhysics Letters, 93, 68005 (2011).

[6] D. Helbing, A. Johansson (2010) Pedestrian, Crowd and Evacuation Dy-

namics. Encyclopedia of Complexity and Systems Science 16, 6476-6495.

[7] F. Zanlungo, Microscopic dynamics of artificial life systems, Ph.D Thesis
in Physics, University of Bologna, 2007

17


