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Abstract

We propose a way to introduce in microscopic pedestrian models a ‘‘social norm’’ in collision avoiding and overtaking, i.e.
the tendency, shared by pedestrians belonging to the same culture, to avoid collisions and perform overtaking in a
preferred direction. The ‘‘social norm’’ is implemented, regardless of the specific collision avoiding model, as a rotation in
the perceived velocity vector of the opponent at the moment of computation of the collision avoiding strategy, and
justified as an expectation that the opponent will follow the same ‘‘social norm’’ (for example a tendency to avoid on the
left and overtake on the right, as proposed in this work for Japanese pedestrians). By comparing with real world data, we
show that the introduction of this norm allows for a better reproduction of macroscopic pedestrian density and velocity
patterns.
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Introduction

In this work we tackle the problem of describing the behaviour

of pedestrians in real world environments using a microscopic (i.e.,

based on individual pedestrian motion) model that takes into

account the asymmetrical behaviour that pedestrians exhibit due

to the presence of (often implicit or subconscious) social norms.

The separation of counter-flows in pedestrian motion has been

long studied from both an experimental and simulation point of

view [1–3]. Most pedestrian collision avoiding models can

reproduce the counter-flow separation in a corridor, but they

usually do it in a symmetrical way, i.e. the flows may be generated

both on the right or left side of the corridor. It has nevertheless

been reported [4] that in most countries the separation of flows

follows a ‘‘non-written rule’’, i.e. the separation of the flows almost

always happens on the same side (the side being dependent on the

cultural norm, for example flows are reported to be on the right

side in continental Europe, and on the left side in Japan). This

norm may be represented as a (un)conscious choice to walk on a

given side of the corridor (i.e., as a modification of the path choice

mechanism of the pedestrian) but it has also been suggested that it

may due to a bias in the collision avoiding behaviour of

pedestrians [5]. According to this approach, the ‘‘social norm’’

that makes pedestrians walk on a given side of a corridor is still

‘‘emergent’’, i.e. it originates from multiple pedestrian interactions,

and can be simulated without major modifications in the

modelling of the collision avoiding mechanism. Nevertheless, the

presence of this bias (microscopic social norm) in collision avoiding has

nontrivial effects on the macroscopic flow separation, not only

affecting the direction in which the separation occurs but also

enhancing the velocity and stability with which the flow divides.

In this paper we extend the previous research on the subject by

accounting for the evidence, that we report in this work, of a social

norm not only in collision avoiding but also in overtaking

behaviour. In doing that we also provide a realisation of the

behavioural bias that can be trivially applied to any collision

avoiding model and at the same time is grounded on the concept

of (microscopic) ‘‘social norm’’, i.e. on the (possibly unconscious)

expectation that also the interaction partner will adopt the same

norm in avoiding and overtaking. After introducing such a bias in

two different collision avoiding models, we investigate to which

extent its introduction allows for a better reproduction of the

density and velocity patterns observed in real world environments.

We believe that the presence of such social norms affects the

self-organisation behaviour of pedestrians in counter-flows and in

a single flow in a corridor (an aspect that is overlooked if the

overtaking norm is not considered), and we believe that the

introduction of the correct behavioural norm in pedestrian models

may improve our ability to simulate and predict the behaviour of

pedestrians also in more complex and realistic environments.
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Data Collection

We collected pedestrian trajectory data in an underground

pedestrian facility in Umeda (downtown Osaka), Japan, in a

location connecting a shopping area with a railway station. This

location was chosen due to the absence of shops and other facilities

(so that the pedestrians are expected to exhibit pure ‘‘goal-

oriented’’ behaviour, i.e. they use the corridor just as a connection

between an origin and a goal both located outside the corridor),

and presents an average pedestrian density that allows for a good

automatic tracking of pedestrian trajectories with our laser sensor

technology [6]. The pedestrian density range that this location

exhibits, corresponding to the normal condition of a shopping mall

or average size station outside rush hour time, is quite low with

respect to the usual range of interest in pedestrian studies, but it is

high enough to present the macroscopic effects of the ‘‘social

norm’’ and we believe that the insight obtained about pedestrian

behaviour at these densities can be useful in the analysis and

simulation of higher density behaviour. A detailed description of

the experimental location and the data collection may be found in

[7] and in the Materials and Methods section (The data set is

available at https://sites.google.com/site/francescozanlungo/

pedestriandata).

We spotted in the data collection location three ‘‘ideal

corridors’’: corridor E1, of width L1~7:25 meters, corridor E2,

of width L2~6:5 meters, and corridor E3 (L3~4 meters). Our

definition of ‘‘ideal corridor’’ corresponds to the presence of

straight walls, constant width, absence of shops, density and

velocity patterns symmetrical along the corridor’s axis, and

exclusive ‘‘goal-oriented behaviour’’ in pedestrians (moving along

the corridor without pursuing other activities). As we have shown

in [7] and discuss in Materials and Methods, E1 and E2

approximate to a very good extent the ‘‘ideal’’ behaviour, while

E3 does it to a lower degree, but we decided to include it in our

analysis since it provides information about a narrower

environment.

We choose for each environment a Cartesian reference frame

with the x axis along the corridor’s axis (so that the y coordinate

represents the distance from one of the walls) and divide

pedestrians in two groups according to the value of their x

velocity component (i.e. their walking direction): the group of

pedestrians with positive velocity Gz~fiDvx
i w0g (where i [ N is

the pedestrian label) and that of pedestrians with negative velocity,

G{~fiDvx
i v0g. We divide each corridor in 8 ‘‘lanes’’ of width

L=8 and compute in each lane j~1,:::,8 the average density rz
j of

pedestrians in group Gz, along with r{
j for pedestrians in G{, as

well as the corresponding average scalar velocities (�vvz
j and �vv{

j ; the

notation �vv is used to distinguish the macroscopic average from

individual scalar velocities vi). Figs. 1 and 2 show the resulting

patterns in environment E1. In order to obtain these figures we

average over the whole observation time (20400 seconds in E1 and

21600 seconds in E2 and E3), and over time windows of 1200

seconds (long enough to define macroscopic quantities such as r
and �vv but short enough to study their time variation and stability)

that are used to obtain the standard deviation error bars. Fig. 1

shows that while the average density in each group G+ changes

moderately with time, the density pattern in each flow is quite

stable, and pedestrians exhibit a strong tendency to walk on the left

side of the corridor (right of the figure for pedestrians in G{). Fig. 2

shows that while the velocity exhibits in general a large variation

on the right side of the corridor (left of the figure for pedestrians in

G{), where a reduced number of pedestrians walk and thus

fluctuations are stronger, there is a more clear pattern on the left

side, and in particular a tendency to walk with a lower velocity

when close to the wall, and a higher one when close to the centre

of the corridor.

Bias (Microscopic Social Norm)

Experimental Evidence
As discussed at the end of the previous section, even at

these relatively low values of average density

(vrw~
P

j (rz
j zr{

j )=8~0:033 pedestrians per square meter

in E1, vrw~0:02 in E2 and vrw~0:021 in E3) we observe in

each environment a clear separation of flows (macroscopic social

norm), always in agreement with the Japanese convention (walking

on the left side of the corridor). We also observe a tendency to walk

with higher velocity in the centre of the corridor (regardless of the

walking direction). While in our previous work [7] we investigated

the possibility that these patterns are the result of the individual

Figure 1. Density distributions as measured in the environ-
ment E1 (rz in red, r{ in blue, axes chosen in such a way that
walking on the left corresponds to have rz on the left of the
figure). Error bars are obtained as standard deviations of
values of r averaged over time windows of length 1200 s.
doi:10.1371/journal.pone.0050720.g001

Figure 2. Velocity distributions as measured in the environ-
ment E1 (�vvz in red, �vv{ in blue). Error bars are obtained as
standard deviations of values of �vv averaged over time windows
of length 1200 s.
doi:10.1371/journal.pone.0050720.g002
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(i.e., independent of the interaction with the others) decision of the

pedestrian, in this work we will follow the approach of [5] in which

they observed a bias in collision avoiding behaviour and used it to

model the asymmetry in the flow separation (asymmetry in the r+

patterns) as an emergent property of the many pedestrian system.

The analysis of the velocity patterns (maximum velocity in the

centre of corridor) suggests us that pedestrians may follow a social

norm also when overtaking (namely overtaking at the centre of the

corridor, or, in the specific case of Japanese pedestrians,

overtaking on the right, i.e. adopting as a norm the same rule

used in vehicular traffic).

To better investigate the presence of such a norm, we measure

the relative velocity between nearby pedestrians for all pedestrians

in the data collection location. For each pedestrian i we define a

Cartesian frame centred in the pedestrians’ position and with the y

axis aligned with their velocity. Then we divide the space in square

cells of linear size 0.05 meters and for each cell we measure and

average the velocity difference Dv:vj{vi of i with respect to each

pedestrian j located in the cell, under the condition vi,vjw0:5 m/s

and (vj
:vi)=(vjvi)w

ffiffiffi
2
p

=2 (empirical thresholds for ‘‘goal-oriented’’

pedestrians moving in the same direction). Fig. 3 reports a clear

tendency for positive values on the right side, and negative values

on the left, suggesting the presence of the proposed overtaking

norm.

In the following we are going to introduce two different models

(or conditions, to discriminate from collision avoiding model), one

describing only the collision avoiding norm, the other describing

both collision avoiding and overtaking norms.

Position Bias (TP) or (only) Collision Avoiding Norm
We first introduce a model that can describe the proper

collision avoiding norm but fails to describe the overtaking one.

Since basically any (continuous space) collision avoiding model

determines the collision avoiding strategy of a pedestrian with

respect to an opponent on the basis of the position and velocity

of the deciding and the opposing pedestrian, a way to introduce

a bias to explain the (Japanese) tendency to avoid on the left is

(simplifying the approach proposed in [5] in such a way that

can be implemented in any collision model) to rotate the

relative distance vector from pedestrian i to pedestrian j, i.e.

dji:xj{xi, of a clockwise angle hp as

x0j~d0jizxi, d0ji~R(hp)dji, ð1Þ

and use it in the computation of the collision avoiding strategy

of i (see Fig. 4 A; the continental Europe norm is obviously

obtained using a counter-clockwise angle). We nevertheless

believe that this bias, which we name TP (Tilt in Position)

condition, has a conceptual and a practical shortcoming. The

conceptual one is that, although it provides an empirical rule to

obtain the desired collision avoiding behaviour, it does not seem

to provide any grounding to explain the pedestrian behaviour,

i.e. the rotation in the relative position of the opponent seems

just a computational trick to obtain the correct norm, but is not

related to nor proposes any explanation of the pedestrian’s

cognitive process when applying the norm. The practical one is

that using this bias induces a tendency to avoid on the left, and

Figure 3. Relative velocity field around a pedestrian (based on all available observational data in the data collection location). The
frame is centred on pedestrian i, the y axis gives the relative position of pedestrian j in the direction of vi (i.e., (dji

:vi)=vi), while the x axis gives the
relative position from left to right. The colour-bar reports average Dv:vj{vi values in mm/s. The difference between values on the left and right,
along with the very high relative velocity (violet) area on the back-right, suggest the presence of a right-oriented overtaking norm. The low velocity
on the back (high velocity on the front) is probably related to collision avoiding behaviour for pedestrians moving in the same direction, while the
low velocity area on the right and high velocity area on the left are probably related to group behaviour (friends that find themselves ahead will slow
down and vice versa).
doi:10.1371/journal.pone.0050720.g003
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overtake on the left (i.e. close to the walls), as shown in

Fig. 4 B.

Velocity Bias (TV) or Collision Avoiding and Overtaking
Norm

We thus suggest a different bias, namely rotating the opponent’s

velocity vector of a counter-clockwise angle hv, so that in collision

avoiding, by predicting the future motion of j as directed on her

right, i will deviate on the left, but when performing overtaking she

will deviate on the right by expecting j to deviate on the left (see

Fig. 5). Not only this bias explains correctly both the expected

avoiding and overtaking norms, but it can be considered as an

actual realisation of the (microscopic) norm, since it can be

justified from a conceptual point of view as the expectation that

the opponents will modify their velocity according to the same

norm (avoiding on the left, and moving on the left when overtaken

to give space to the overtaker). To better describe also the

expectation of the overtaken to be passed on the right, we define

our TV (Tilt in Velocity) bias as a rotation of the opponent’s

velocity.

v0j~R(h’v)vj , ð2Þ

where

h’v~hv

dji
:vi

djivi

ð3Þ

(see Fig. 6). Such a modification accounts also for the reduction of

the effect of the bias in ‘‘crossing encounters’’, i.e. when

(dji
:vi)=(djivi)%1 (since no clear social norm is defined in such a

situation), and thus allows for applications to environments more

complex than ‘‘ideal corridors’’. We notice that while the TP bias

can be applied also to models that, as the Circular Specification of

the Social Force Model (SFM) [8], do not use the opponent’s

velocity in the determination of the avoiding strategy (while the

TV bias would be ineffective in those models), it can be shown that

using the opponent’s velocity is necessary to properly describe

pedestrian motion, in particular outside the high density regime

[9–11].

Simulations

In this section we try to reproduce the r and �vv distributions

observed in our data collection campaign by using purely collision

avoiding pedestrian models, comparing the performance of the

different bias conditions. The observed r and �vv patterns are stable

in time and along the whole data collection location, i.e. on the

time scale of tens of seconds and meters over which we could

follow individual pedestrians we did not observe the process of

formation of these patterns. We thus suggest that if the patterns are

the results of multiple pedestrian interactions, the space scale for

their formation is that of the larger Umeda pedestrian area, i.e.

hundreds of meters or even a few kilometres. To reproduce these

patterns we thus perform simulations with ideal corridors of widths

and average densities corresponding to those of E1, E2 and E3, but

we use longer lengths and periodic boundary conditions in order

to have pedestrians walking in the environment for time scales of

hours and distances of kilometres. The observed patterns are

compared to the simulation ones, and the parameters of the

models that better reproduce the data are optimised through a

Genetic Algorithm (GA), which is a very valuable method for

optimising the output of a complex model using a simple fitness

function [12], and has been used with success in optimisation of

pedestrian models [9–11,13,14]. The final fitness (similarity score)

of the best solution is used as an evaluation function for the ability

of a given model to reproduce the observed patterns (see the

Materials and Methods section for details).

Both suggested biases can be straightforwardly applied to any

collision avoiding pedestrian model using position and velocity

information. In our analysis we use the Elliptical Specification II of

the SFM (ES) [9] and the Collision Prediction Specification (CP)

[9], two models that are quite different in their formulation but

yield very similar results (see Materials and Methods for details). In

determining the r and �vv distributions in a corridor, also the

interaction with the walls has an important role. In ES we

implement the interaction with walls using forces whose intensity

decreases exponentially with the distance from the walls, as it is

usually done in the SFM framework (i.e. the interaction with the

walls is velocity-independent and can influence the r but not the �vv
distribution), while in CP the possible collisions with the walls are

explicitly computed, introducing a velocity dependence in the

interaction with the walls (since faster pedestrians may collide

earlier and faster with walls, the resulting force leads them to walk

farther from the walls regardless of the overtaking behaviour).

Figure 4. Collision avoiding and overtaking in pedestrian
models using the TP (Tilt in Position) condition.
doi:10.1371/journal.pone.0050720.g004

Figure 5. Collision avoiding and overtaking in pedestrian
models using the TV (Tilt in Velocity) condition.
doi:10.1371/journal.pone.0050720.g005
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We evaluate the similarity between the simulated and observed

distributions using the following fitness function, that tests the

ability of simulations to reproduce the experimentally observed r
and �vv distributions by measuring the ratio of the difference

between simulated and observed patterns over the range of values

assumed by the observed distribution (this fitness function was

chosen to evaluate properly both r and �vv distributions, and to

reduce the effect of fluctuations; see Materials and Methods for a

detailed justification). In detail, let us name P+
i (yj) and V+

i (yj)

the simulated r+ and �vv+ distributions in environment Ei, for each

flow, evaluated in the centre of each Li=8 wide lane (Li is the

width of environment Ei),

yj~jLi=8{Li=16 j~1,:::,8;

and ~rr+
i (yj), ~vv+i (yj) the corresponding observed distributions,

normalised in such a way that, defining

vf w~

P
j f (yj)

8
, ð4Þ

we have

v~rr+
i w

vP+
i w

~
v~vv+i w

vV+
i w

~1 Vi: ð5Þ

Let us also denote the range of values assumed in each distribution

as.

D~vv+i ~ max
j

~vv+i (yj){ min
j

~vv+i (yj), ð6Þ

D~rr+
i ~ max

j
~rr+

i (yj){ min
j

~rr+
i (yj); ð7Þ

the fitness function is defined as

F~
F rzF v

96
, ð8Þ

where

F r~{
X

i~1,:::,3;k~+;j~1,:::,8

~rrk
i (yj){Pk

i (yj)

D~rrk
i

� �2

ð9Þ

and

F v~{
X

i~1,:::,3;k~+;j~1,:::,8

~vvk
i (yj){Vk

i (yj)

D~vvk
i

� �2

: ð10Þ

This function averages the square of the error relative to the range

of values assumed in the distribution for all the 96 evaluation

points (8 points in 4 distributions for 3 environments).

Simulations are performed using the CP and ES models with

the TP, TV biases and without bias (T0). Given the stochastic

nature of the fitness function (due to the stochasticity in the

pedestrian velocity distribution, relative weight of flows and noise

in the model output, see also Materials and Methods), and the

possibility that single runs of GA are trapped around local maxima

for a time comparable to the overall iteration number, we perform

Nr~10 independent GA runs for each model and condition. For

each independent GA run we record the fitness value of the best

found solution, and the average value and standard deviation of

best solutions’ absolute fitness value over the Nr runs are used as

an evaluation function of the model and condition (evaluation

function Eaverage; since the absolute value of fitness gives the

difference between observed and simulated distributions, a lower

Eaverage accounts for a better performance). At the same time it is

important to record the parameter set of the overall best solution

(the best solution with the maximum fitness function over the Nr

runs), whose performance is then statistically evaluated over Nb

independent tests (evaluation function Ebest). We may say that

Eaverage provides information about the ability of the GA to find a

good solution for a given model and condition, and the stability of

this solution, while Ebest provides information about the best

possible performance (global maximum) of the model (see

Materials and Methods for more details on evaluation functions).

Results

Table 1 shows the average value and standard deviation over

different GA runs for all models and conditions (evaluation

function Eaverage), while Table 2 shows the performance of best

solutions (evaluation function Ebest). For each model we have a

difference of order 3–4 standard deviations (in Eaverage, the

difference is much larger in Ebest) between the TP and T0

conditions, and around 2 standard deviations (Eaverage) between

Figure 6. Difference between avoiding a collision and being
overtook in pedestrian models using the TV (Tilt in Velocity)
condition. A: since (dij

:vj)=(dijvj)&1, i.e. h’v&hv , j expects i to avoid on

the left. B: since (dij
:vj)=(dijvj)&{1, i.e. h’v&{hv , j expects i to overtake

on the right.
doi:10.1371/journal.pone.0050720.g006

Table 1. Models and conditions performance (Eaverage).

T0 TP TV

ES 0.07960.009 0.06160.004 0.05260.005

CP 0.05960.005 0.03760.004 0.03260.002

{F for different models and conditions (evaluation function Eaverage , i.e.

average performance and stability of the model). ES stands for the Elliptical
Specification model, while CP stands for the Collision Prediction model. TP
stands for the Tilt in Position condition, TV for the Tilt in Velocity one, while T0
for the absence of social norms. Averages and standard deviations are over
Nr~10 different GA runs.
doi:10.1371/journal.pone.0050720.t001
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TV and TP, showing the improvement due to the introduction of

a collision avoiding norm, and the further improvement due to the

introduction of the overtaking norm. It is interesting to notice the

large difference (up to 6 standard deviations for TP and TV)

between the CP and ES models. We do not believe that this

difference is due to some pitfall in the description of collision

avoiding in ES with respect to CP since the two models have

similar performances in describing individual behaviour [11], nor

that the proposed ‘‘social norms’’ (TP and TV) cannot be applied

properly to ES. According to our interpretation, the better

performance of CP is due to its ability to describe the tendency of

faster pedestrians to walk in the centre of the corridor regardless of

overtaking (due to its velocity-dependent wall interaction). If two

different tendencies are present, i.e. walking preferentially closer to

the centre of the corridor while walking fast, and overtaking on the

right, a model like CP-TV, that can describe both tendencies,

should outperform a model as ES-TV that can describe only the

overtaking one. Since CP-TP outperforms ES-TV of 3 standard

deviations, it appears that in our environments overtaking is not

the leading factor. Nevertheless, since E1 is the largest and most

dense environment, it may be expected that in E1 overtaking

happens more often, and thus the overtaking norm would be

relatively more important in describing the velocity distributions of

that environment.

We thus performed a second test calibrating only on the E1

velocity and density distributions, obtaining the results of Tables 3

and 4, which are in agreement with our hypothesis by showing

that in the description of the E1 environment overtaking is more

important than the tendency to walk closer to the centre while

walking faster (CP-TP is outperformed by ES-TV of one standard

deviation and by CP-TV of two standard deviations in Eaverage).

Figs. 7, 8 show the comparison between the results obtained

using the ES model under the TV and TP conditions on the E1

environment, after calibration over all environments. Since the

fitness function is quadratic, it penalises large errors. As a result, in

order not to choose parameter values that would describe a �vv
distribution very different from the experimental one, the GA

chooses for the ES-TP method values of parameters that generate

a weak separation between flows, since a stronger flow separation

would require a stronger microscopic ‘‘social norm’’ and thus, in

the TP condition, high velocities close to the wall (see also the

Parameter values section in Materials and Methods).

Conclusions
In this work we provided experimental evidence about the

tendency of Japanese pedestrians to walk preferentially on the left

side of corridors, to walk with higher velocity when close to the

centre of the corridor, and in general to overtake on the right.

Based on these observations, in order to better describe the

pedestrian behaviour, we suggested two different ways to

implement ‘‘social norms’’ in any microscopic pedestrian model

that uses velocity based information. The first (Tilt in Position)

norm describes only the tendency of pedestrians to avoid collisions

by deviating on the left, introducing a bias through a rotation in

the opponent’s relative position; while the second (Tilt in Velocity)

one describes both the tendency to avoid on the left and overtake

Table 2. Models and conditions performance (Ebest).

T0 TP TV

ES 0.07060.002 0.059360.0004 0.04460.001

CP 0.06460.004 0.03760.001 0.03160.001

{F for different models and conditions (evaluation function Ebest , i.e. best
performance of the model). ES stands for the Elliptical Specification model,
while CP stands for the Collision Prediction model. TP stands for the Tilt in
Position condition, TV for the Tilt in Velocity one, while T0 for the absence of
social norms. Averages and standard deviations are obtained over Nb~20 tests
of the overall best solution over the Nr runs of Table 1.
doi:10.1371/journal.pone.0050720.t002

Table 3. Models and conditions performance on E1 (Eaverage).

TP TV

ES 0.05560.007 0.03360.005

CP 0.04060.007 0.02960.005

{F for different models and conditions after calibration only on the E1

environment (evaluation function Eaverage , i.e. average performance and stability

of the model). ES stands for the Elliptical Specification model, while CP stands
for the Collision Prediction model. TP stands for the Tilt in Position condition,
while TV stands for the Tilt in Velocity one. Averages and standard deviations
are over Nr~10 different GA runs.
doi:10.1371/journal.pone.0050720.t003

Table 4. Models and conditions performance on E1 (Ebest).

TP TV

ES 0.04560.001 0.03160.001

CP 0.03760.001 0.02560.001

{F for different models and conditions after calibration only on the E1

environment (evaluation function Ebest , i.e. best performance of the model). ES
stands for the Elliptical Specification model, while CP stands for the Collision
Prediction model. TP stands for the Tilt in Position condition, while TV stands for
the Tilt in Velocity one. Averages and standard deviations are obtained over
Nb~20 tests of the overall best solution over the Nr runs of Table 3.
doi:10.1371/journal.pone.0050720.t004

Figure 7. Comparison between the observed density distribu-
tion ~rr{ (black) and simulated density distributions P{ (blue
and red) in E1. Both simulated distributions are obtained using the ES
(Elliptical Specification) model, the blue line showing results obtained
under the TP (Tilt in Position) condition, the red line results obtained
under the TV (Tilt in Velocity) condition. Average values and standard
deviations (error bars) for simulated distributions are obtained over
Nb~20 tests (using Ns~20) of the overall best solution over the
Nr~10 independent runs of the GA (calibration over all the
environments). Observed data error bars are obtained as in Fig. 1.
doi:10.1371/journal.pone.0050720.g007
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on the right by rotating the opponent’s velocity vector (the Tilt in

Velocity social norm can be justified from a cognitive point of view

as the expectation that the opponent would follow the same

strategy). We have shown, using two different collision avoidance

models, that the introduction of such social norms allows for a

better reproduction of observed pedestrian velocity and density

patterns with respect to models not using any kind of social norm.

Furthermore, we have shown that the social norm describing both

collision avoidance and overtaking behaviours outperforms the

norm that describes only the bias in collision avoiding. We also

found that models including a tendency to walk closer to the centre

of the corridor for fast walking pedestrians, regardless of overtaking

behaviour, may describe better the velocity distribution of actual

pedestrians, in particular at low densities. Nevertheless, models

that include a description of this tendency and of the overtaking

norm outperform models without overtaking norm, and the

overtaking behaviour becomes dominant at higher densities.

Assuming that these kinds of norm are present also at higher

densities, a proper introduction in simulation methods should

enhance the ability to simulate pedestrian flows and design

pedestrian facilities able to sustain diverse pedestrian streams.

A relevant part of pedestrian crowds is composed of groups [15–

17], as confirmed also by our analysis of relative velocities. The

group behaviour affects the macroscopic behaviour of pedestrians

[18] and thus also the density and velocity distributions, and the

introduction of group behaviour in simulations, along with the

development of the necessary ‘‘group-related social norms’’

represents an interesting development of the present work.

We also believe that a cross-cultural study would be extremely

interesting, to compare qualitative and quantitative differences

between the norms that we have observed in Japanese pedestrians

and those occurring in other countries and cultures.

Materials and Methods

Data
Our data campaign is described in detail in [7] (the

environments E1, E2 and E3 are named, respectively, E1a, E2a
and E2b in that work). Our definition of an ideal corridor is based

on a qualitative analysis of the environment (absence of shops,

intersections, obstacles; straight walls) and a qualitative and

quantitative analysis of the data (denoting the x axis as the

corridor’s axis, density should be almost invariant along x,

furthermore we require at least 90% of the data points recorded in

the environment to satisfy our empirical definition of ‘‘goal-

oriented behaviour’’, i.e. DvDw0:5 m/s, Dvx=vyDw3). Density and

velocity were initially computed on squares of linear size 25 cm

using all data, but eventually only data satisfying the ‘‘goal-

oriented behaviour’’ condition are used to obtain the distributions

analysed in this paper. E1 (length 23 m) and E2 (10 m) satisfy all

our conditions, while E3 (17 m) actually crosses another corridor

and only 60% of the data satisfies the ‘‘goal-oriented behaviour’’

condition.

Collision Avoiding Models
The ES model is a SFM specification that takes into account

also relative velocity information to better describe pedestrian

motion [9]. The force on pedestrian i determined by pedestrian j is

given by

f ij(dij ,vji)~Ae{bij=B dijzyij

4bij

dij

dij

z
yij

yij

� �
, ð11Þ

where dij:xi{xj and vji:vj{vi are, respectively, the relative

distance and velocity between pedestrians i and j,

2bij:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dijzyij)

2{(vjit)2
q

and

yij:dij{vjit:

t was originally introduced as the time of a pedestrian stride, but

we found [11] that a value of t&2 s better describes the prediction

of other people’s motion that pedestrians perform at the densities

of interest in this work. The interaction with the walls is

implemented as a force orthogonal to the walls with magnitude

f w
i ~Awe

{(dw
i

{r)=Bw
: ð12Þ

Here Aw and Bw are wall specific parameters, r is the pedestrian

size (radius) and dw
i the current distance of pedestrian i from the

wall.

The CP model [11] introduces in the SFM framework concepts

developed in the velocity-based models [19–21], using in the

original equations of the Circular Specification [22], instead of the

current distance between the pedestrians, the distance they will

have at the moment of maximum approach. In detail, pedestrian i
computes for each pedestrian k in the environment the time tik at

which they will reach the minimum relative distance, assuming

they will maintain their current velocities. ti is defined as the

minimum over k of tik. Then the force on i determined by a

Figure 8. Comparison between the observed velocity distribu-
tion ~vv{ (black) and simulated velocity distributions V{ (blue
and red) in E1. Both simulated distributions are obtained using the ES
(Elliptical Specification) model, the blue line showing results obtained
under the TP (Tilt in Position) condition, the red line results obtained
under the TV (Tilt in Velocity) condition. Average values and standard
deviations (error bars) for simulated distributions are obtained over
Nb~20 tests (using Ns~20) of the overall best solution over the
Nr~10 independent runs of the GA (calibration over all the
environments). Observed data error bars are obtained as in Fig. 2.
doi:10.1371/journal.pone.0050720.g008
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particular pedestrian j is computed as.

f ij(fdikg,fvikg,vi)~A
vi

ti

e{d ’ij=B dij
0(ti)

dij
0(ti)

, ð13Þ

where dij
0(ti) is the predicted relative distance at time ti (fdikg and

fvikg are the sets of relative distances and velocities with respect to

all the pedestrians k=i in the environment, which are necessary to

determine ti). The interaction with walls is implemented by using

predicted distances to walls in eq. 13, along with wall specific

parameters Aw and Bw (collision times with walls are considered

when computing ti). In this work we made the model more stable

by applying the condition

Dtƒtiƒtmax,

where Dt is the integration step and tmax a new parameter of the

model. The performance of the two models is very similar at the

densities investigated in this paper [11].

Simulations Settings
In all simulations we use a time step Dt~0:2 s. The physical

dynamics of pedestrians is approximated as that of hard discs of

radius r~0:18 m (at the density of interest in this paper the

physical interactions between pedestrians are negligible and this

condition is just used to ensure non-overlapping in the rare

occurrence of a collision). All the corridors in our simulation

environments are 500 m long. In order to have the same overall

density (i.e., vrw~vrzzr{
w) that we observed in E1, E2

and E3, we place 120 pedestrians in a L~7:25 m environment, 65

in a L~6:5 m one, and 42 in a L~4 one. A test of a possible

solution (set of parameters for the model and condition) consists of

Ns simulations. In each single simulation pedestrians are assigned to

Gz with probability pz~vrz
w=vrw and to G{ with

probability 1{pz, while their preferred velocities are randomly

determined by a Gaussian distribution with mean 1.28 m/s and

deviation 0.2 m/s, corresponding to the observed distribution of

average velocities in the data collection location. Virtual pedes-

trians walk in the environment for T~5000 s. In order to reduce

the effect of fluctuations and to obtain time-stable ‘‘asymptotic’’

distributions, the r and �vv distributions used in the evaluation of the

fitness function are obtained as the average over the last T=2
seconds of Ns statistically independent simulations. In order to

check the time stability of these distributions we perform also

simulations of length T ’~2500 s without observing significant

changes, i.e., performing the tests in Tables 2 and 4, we have

differences between the T s and T ’ s tests smaller than the

corresponding standard deviations. During the evaluation of

solutions in the GA we use Ns~20 simulations for each fitness

function evaluation, while during the test of best solutions (i.e., in

the Ebest evaluation) we use Ns~100. In our simulations all

pedestrians use the same model and condition parameters, but in

order to reproduce (at least from a purely statistical point of view)

the unpredictability and diversity of human behaviour we add

noise to the model output (the value of the noise intensity is one of

the GA parameters).

GA Settings and Parameters
The GA uses 30 genomes and 30 generations, tournament

selection (two best solutions in two pools of 3 randomly picked

ones are used for mating), crossover and random mutation with

probability 0.03 (parameters are coded as floating point numbers

and modified with Gaussian white noise; each parameter is

constrained between a maximum and minimum value and the

standard deviation of the Gaussian mutation is one tenth of the

parameter range). The ranges of the model parameters are chosen

in such a way that they do not differ strongly from those that

describe the local behaviour of pedestrians as reported in [11].

The parameters of the ES model are: the noise in the velocity

output of the model sn (standard deviation of normal white noise

added to the vx and vy model output); the asymmetry parameter l
(see for example [11] for a definition); the inverse of the time scale

to recover the preferred velocity, k; A; B; Aw; Bw; the range of

interaction with pedestrians rv (pedestrians are ignored if their

current distance is larger than rv); the interaction range with walls

rw
v ; and t.

The parameters of the CP model are: sn; l; k; A; B; Aw; Bw; rv

(pedestrians are ignored if their distance at the moment of maximum

approach is larger than rv); rw
v ; and tmax.

The parameter ranges (including the ‘‘social norm’’ parameters

hp and hv) are reported in Table 5.

Fitness Function
Our work compares the ability to reproduce observed and

simulated r and �vv patterns. The major problem that we faced was

to introduce a quantitative fitness function that could reflect the

ability of the simulations to reproduce the ‘‘qualitatively salient’’

features of two distributions that are quite different between them.

Both distributions may oscillate in their average value, since the

number of pedestrians in each flow and the preferred velocity of

pedestrians are chosen in a probabilistic way. These fluctuations

can be reduced using a high number of simulation Ns for each

evaluation, as we do in the final tests on best solutions, but a high

value of Ns is extremely computationally expensive if used in the

GA. Furthermore, the average value of the �vv distribution is

determined by the input of the preferred velocity distribution, but

preferred velocities and average velocities are not the same, and

Table 5. Parameter ranges in models and conditions.

ES CP

sn 0.2–0 m/s 0.2–0 m/s

l 1–0 1–0

k 1.26–0.63 s21 2.28–1.14 s21

A 1.6–0.8 m/s2 2.26–1.13 m/s2

B 1.24–0.62 m 1.42–0.71 m

Aw 1.6–0.1 m/s2 2.26–0.1 m/s2

Bw 1.24–0.1 m 1.42–0.1 m

rv 10–3 m 10–0.5 m

rv
w 3–0 m 3–0 m

t 2.6–1.3 s

tmax 10–2 s

hp 0.4–0 rad 0.4–0 rad

hv 0.4–0 rad 0.4–0 rad

Ranges of values that the simulation parameters can assume, i.e. the GA
chooses the parameters that better describe the measured data within these
ranges. The values were chosen on the basis of the calibration on individual
pedestrian trajectories performed in [11], in order to ensure that the
microscopic behaviour of simulated pedestrians would not differ too much
from that of real pedestrians. ES stands for the Elliptical Specification model,
while CP stands for the Collision Prediction model.
doi:10.1371/journal.pone.0050720.t005
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their relation changes according to models, conditions and

parameter values. For this reason we decided to scale the

distributions in such a way that simulated and observed ones

have always the same average value (eq. (5)). Since the two

distributions are dimensionally different, it is necessary to use an

adimensional quantity in the fitness function. The most straight-

forward solution would be the relative error, but while such a

quantity can reach values around 1 for the r distribution, whose

range goes from 0 to a maximum rmax, on the opposite, the

relative error values assumed in the �vv distribution are limited by

the input of the preferred velocity distribution, i.e. a Gaussian

centred in 1.28 m/s with a variance 0.2 m/s, and thus typically

limited to a &0:2=1:28 range. In order to give the same weight to

the two distributions, we divide the absolute error by the ranges

(eqs. (6–10)) obtaining relative errors (possibly) up to 1 both for r
and �vv.

Evaluation Functions
For complex multi-dimensional parameter space problems as

those faced in this work, a single run of the genetic algorithm may

get trapped around a local maximum for a time comparable to the

overall generation number. In order to avoid this problem we use

Nr statistically independent GA runs to explore an as large as

possible portion of the parameter space. By computing the average

and standard deviation of the absolute value of the fitness of the

best solution in each run (evaluation function Eaverage), we obtain

information about the average performance and stability of the

GA calibration for each model and condition, which is reasonably

related to the ability of the model and condition to reproduce the

observed data. The best solution over the Nr runs is obviously our

best estimate for the global maximum of the problem, nevertheless

given the stochastic nature of the problem, its value over a single

test may not be significant. For this reason we also run Nb

independent tests, each one composed by Ns independent

simulations (evaluation function Ebest), of this overall best solution,

in order to obtain a good approximation of the value of the global

maximum of the problem, i.e. of the performance of the model

and condition. Note that while in general EaveragewEbest, this

relation might not hold for models and conditions strongly affected

by fluctuations.

Parameter Values
Tables 6 and 7 report the values of parameters after calibration

in all models and conditions (average and standard deviation over

the Nr GA runs). We first notice that the value of hv (hp) depends

on the model, and specifically is lower for the CP model. This

could be due to the fact that CP, by performing an explicit

prediction of collision times, is more sensible to the tilts in velocity

and position. We also notice that in general the value assumed by

hv is larger than the value assumed by hp; this could be due to the

fact that, as we discussed in the Results section, the GA usually

leads to a weaker microscopic social norm for TP, to avoid having

high velocities close to the wall and thus a �vv distribution very

different from the experimental one. This hypothesis is also backed

by the observation that in general rv assumes a much higher value

under TV than under TP: by reducing the interaction, TP

manages to have a �vv distribution as similar as possible to the

observed one (Fig. 8), to the expenses of a weaker flow separation

(Fig. 7).
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Table 6. Parameter values after calibration in the ES (Elliptical
Specification) model.

ES-TP ES-TV

sn 0:16+0:03 m/s 0:15+0:02 m/s

l 0:95+0:1 0:95+0:06

k 0:8+0:2 s21 0:9+0:2 s21

A 1:0+0:3 m/s2 1:4+0:2 m/s2

B 0:7+0:2 m 0:8+0:2 m

Aw 0:9+0:6 m/s2 0:7+0:6 m/s2

Bw 0:6+0:4 m 0:7+0:4 m

rv 3:5+0:7 m 8:0+2 m

rv
w 2:0+0:8 m 2:1+0:8 m

t 2:3+0:4 s 2:0+0:4 s

hp 0:27+0:16 rad

hv 0:37+0:04 rad

TP stands for the Tilt in Position condition, while TV stands for the Tilt in
Velocity one.
doi:10.1371/journal.pone.0050720.t006

Table 7. Parameter values after calibration in the CP
(Collision Prediction) model.

CP-TP CP-TV

sn 0:18+0:02 m/s 0:18+0:04 m/s

l 0:5+0:4 0:95+0:1

k 1:3+0:3 s21 1:17+0:05 s21

A 2:2+0:2 m/s2 1:9+0:4 m/s2

B 1:17+0:3 m 1:+0:3 m

Aw 0:8+0:5 m/s2 0:9+0:4 m/s2

Bw 0:7+0:5 m 1:0+0:4 m

rv 1:6+2 m 5:6+3 m

rv
w 1:9+1 m 1:4+0:8 m

tmax 6:1+3 s 6:1+3 s

hp 0:07+0:04 rad

hv 0:16+0:1 rad

TP stands for the Tilt in Position condition, while TV stands for the Tilt in
Velocity one.
doi:10.1371/journal.pone.0050720.t007
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