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Abstract

We combine video recording and laser range tracking to anal-
yse the geometrical structure of groups of walking pedestri-
ans socially interacting. By recording their relative position
and observing their social interaction for a large enough time
span we can analyse the stability and universality of their spa-
tial structure. We find that while 2-pedestrian and 3-pedestrian
groups have a relatively “time stable” and “universal” geomet-
rical structure (an abreast formation for pairs, and a “V” for-
mation for triads, with the central pedestrian walking slightly
behind), no such structure emerges for larger groups. Never-
theless, these larger groups result to be composed of time sta-
ble two or three people sub-groups with the same “universal”
geometrical structure of isolated pairs and triads.

Keywords: Group dynamics; proxemics.

Introduction
The spatial relationship of socially interacting people, i.e
proxemics, has been largely studied, starting from the seminal
works of (Hall, 1969) and (Kendon, 1990) in which the dis-
tances between and spatial distribution of people participating
in social activities have been investigated. At the same time
other researchers have investigated the size of social groups
(by size of a group we mean the number of its components)
and the probability distribution of these sizes (James, 1953;
Coleman & James, 1961). Many of the aforementioned stud-
ies are based on “ecological” observations, i.e. studies in
which people are observed in their natural environment while
reducing as much as possible the effect of observations on
their behaviour. While these studies are obviously based on
observations of people behaviour in public spaces, until re-
cently they did not focus on one of the main components of
public spaces population (at least in modern urban areas), i.e.
walking pedestrians. Here by pedestrian we mean a person
in a public space moving between two locations for practical
or recreational purposes, or even “wandering around” an en-
vironment without any particular goal. Pedestrians are often
part of social groups with a specific proxemics determined by
their dynamical constraints (the fact that they are walking),
but the study of these groups has been traditionally made dif-
ficult by the fact that they are moving and located inside a
crowd, which makes the observation of their behaviour more
troublesome. Nevertheless, lately a few works have focused
on the behaviour of these groups (Moussaı̈d, Perozo, Garnier,
Helbing, & Theraulaz, 2010; Costa, 2010), due also to the
growing interest in crowd behaviour of which groups are a
non negligible component (Aveni, 1977). This interest is due

to the necessity of simulating crowd behaviour to design bet-
ter pedestrian facilities (Helbing, Farkas, Molnar, & Vicsek,
2002), but also to reproduce faithfully the behaviour of virtual
crowds for the entertainment industry (Karamouzas & Over-
mars, 2012).
While (Moussäıd et al., 2010) report that the spatial structure
of a freely walking (i.e. not environmentally constrained)n-
pedestrian group is a line of abreast walking pedestrians, that
tends to be bent into “V” or “U” formations (i.e., the pedestri-
ans on the sides walk ahead) when the crowd density grows,
(Costa, 2010) reports different spatial structures, suggesting
for example that the “V” structure is the most occurring one
for three people groups (regardless of crowding), and that
larger groups tend to split into smaller sub-groups. Never-
theless (Costa, 2010) does not analyse the possible effectsof
environmental constraints on observed behaviours (the width
of the sidewalks pedestrians were observed in was compara-
ble to the group spatial sizes), and does not provide a quanti-
tative study of 2D space structures, nor follows groups for a
time interval long enough to analyse their change in time.
The difference between these observations leads us to two re-
lated problems in walking group proxemics, to which we try
to bring insight in this work:

• Do n-pedestrian groups (i.e. groups composed ofn
members) have aprevalent geometrical structure? Here
by prevalent we meanuniversal (common to almost all
groups, or at least present in a large majority of them) and
time stable (i.e. the positions of pedestrians in an uncon-
strained group will be given by small oscillations around
those of theprevalent structure).

• If such an overall structure does not exist for an-pedestrian
group, is it possible to find it at the sub-group level?

In order to analyse these issues, we have to observe pedestri-
ans in a situation in which collision avoiding and environ-
mental constraints are not very strong (otherwise it would
be impossible to identify the “universal” structure). Further-
more, we have to combine the need to measure with good
detail (and for long enough time) the position of pedestrians,
with that of observing their social interactions, in order to
analyse the group structure. If a large pedestrian group is
divided into smaller sub-groups we may expect social inter-
action inside sub-groups to be more frequent than between
different sub-groups, and for this reason in many cases the
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belonging of sub-groups to a larger group structure may be
determined only if the observation is long enough. To attain
this goal we combine a laser range finder tracking technology,
that allows us to determine with good precision the position
and velocity of each pedestrian in a large public environment,
with frontal view (face level) video recordings, that allowus
to analyse their social interactions (Fig. 1). As a result, we
can follow pedestrian groups for a relatively long time while
examining both their social and spatial interactions from a
(respectively) qualitative and quantitative point of view. We
performed these observations in a large area completely ded-
icated to pedestrian motion, and in a location and time in
which the pedestrian density was relatively low, in order to
be able to observe the behaviour of “unconstrained” groups.

Figure 1: Video camera frame of the experimental area. A
sensor pole is visible in the bottom-right corner.

Methodology and definitions
Data collection
We tracked pedestrian motion in two areas of a pedestrian
underground facility in Umeda, Osaka (Japan), for a total
time of 6 hours in each area. The pedestrian areas consist
of a few corridors connecting a railway station to a shopping
mall, each area being around 500 m2. The environments are
described in detail in (Zanlungo, Chigodo, Ikeda, & Kanda,
2012; Zanlungo, Ikeda, & Kanda, 2012), and the pedestrian
tracking data are available at (Zanlungo, 2012). The average
pedestrian density in the environment resulted to be≈ 0.03
pedestrians per square meters while the width of the corri-
dors varied between 4 and 7 meters, meaning that the average
distance from a pedestrian to another pedestrian outside their
group, or to a wall, is expected to be larger than the spatial
size of the group (for example a group of 4 people walking
in an abreast formation, assuming an interacting distance of
1 meter between first neighbours, should be 3 meters wide,
compared to an expected distance between pedestrians> 5
meters at such a density). We can thus assume pedestrians to
be fairly “unconstrained” by the environment and freely walk
in their preferred spatial formation for most of the time.
We used 16 Hokuyo UTM sensors (situated on poles close to
the environment walls not to hinder pedestrian motion, Fig.
1) and the tracking algorithm (Glas, Miyashita, Ishiguro, &
Hagita, 2009) to determine pedestrian positions at times in-
tervalsδt ≈ 50 ms with precision≈ 50 mm. We smoothed
the tracked positions on time windows∆t = 500 ms, to fur-

ther improve the tracking precision. Pedestrian velocity is
computed as the ratio of the displacement vector between two
(smoothed) consecutive tracking positions (eq. 2), and hasan
expected precision≈ 50− 100 mm/s. As we will see (see
also the discussion in (Zanlungo, Chigodo, et al., 2012)) this
tracking precision is negligible with respect to the typical in-
teraction distances and velocities of pedestrians.
We also video recorded each experimental area with two dif-
ferent “frontal view” cameras (Fig. 1), located in such a way
to allow observing the social interaction between the pedestri-
ans for a sufficient long time (pedestrians are usually tracked
and observed for a time of the order of tens of seconds). This
camera based observation of social interaction was possible
because the cameras are not needed for tracking and the den-
sity was relatively low. A “coder” (a non-technical staff mem-
ber of our laboratory), was asked to identify all the pedes-
trian social groups in the environment and their members.
In order to do that, she was asked to use all the informa-
tion available from the videos, such as relative position, co-
herent motion, and social clues including conversation, gaze
exchange and even age, sex and clothing (for example she
identified a relatively large flock of coherent moving people
as a single group because they were all dressed for and car-
rying similar hiking equipment). She was asked to identify
only groups of which she could establish the nature without
any reasonable doubt (i.e. she was asked to strongly avoid
false positives, while false negatives were allowed). Further-
more, the coder was asked to annotate the groups, and the
individuals in each group, for which she could without any
doubt identify explicit social interaction clues (namely con-
versation, or explicit gaze exchange). Table 1 shows the num-
ber and size of labelled groups, distinguishing between “fully
connected” groups (FCG) for which she could observe ex-
plicit social interaction between all the members, and “dis-
connected” groups (DG) that seemed to be related on the
basis of other visual clues but for which explicit interaction
could not be observed (or was observed only in smaller sub-
groups). To avoid false positives, only FCG are analysed in
this paper. (The coder identified also six 5-pedestrian groups,
six 6-pedestrian groups, one 7-pedestrian group and one 18-
pedestrian group, not analysed in this work due to the small
size of the samples).

Size n = 2 n = 3 n = 4
FCG 1126 114 17
DG 91 34 14

Table 1: Observed fully connected (FDG) and disconnected
groups (DG) for each group sizen.

Definitions

In order to identify the existence of an “universal” structure
in a pedestrian group, it is necessary to study it in the correct
reference frame. The most natural candidate is the group’s
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“centre of mass frame” (see Fig. 2). Let us call

xe(tk) = (xe(tk),y
e(tk)) tk = k ∆t (1)

the position of a pedestrian in the “environment” reference
frame, smoothed on regular∆t = 500 ms time windows, and

ve(tk)≡
xe(tk+1)−xe(tk)

∆t
(2)

the corresponding pedestrian velocity. Let us consider an-
pedestrian (from now onn-p) (sub-)group with position and
velocities

{xe
i (tk),v

e
i (tk)} i = 1, ...,n,

and define the group “centre of mass” position and velocity

X(tk) =
∑i x

e
i (tk)
n

V(tk) =
∑i v

e
i (tk)
n

. (3)

Let us name GCMF the group centre of mass frame (at time
tk) with origin in X(tk) and they axis aligned toV(tk), i.e.
with axis versors

êx(tk) =

(

Vy(tk)

V (tk)
,−

Vx(tk)
V (tk)

)

êy(tk) =
V(tk)
V (tk)

(4)

(from now on we removet from notation for simplicity’s
sake). The position of pedestriani in the GCMF is then
xi = (xi,yi) with

xi = (xe
i −X) · êx yi = (xe

i −X) · êy. (5)

We also define the polar coordinates(ri,θi) through

xi = ri sinθi yi = ri cosθi, (6)

wherer =
√

x2+ y2 represents the distance of the pedestrian
from the centre of mass (for 2-p groups 2r is the distance
between pedestrians). Fig. 2 illustrates the previously defined
quantities in the 2-p case, for which the following holds

r2 = r1, x2 =−x1, y2 =−y1, θ2 = π+θ1. (7)

It is important to quantitatively study the structure of the
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Figure 2: GCMF variables definition.

group in the GCMF, because the distinctive feature of walk-
ing groups is the presence of a centre of attention, namely the

direction towards their current sub-goal, which is identified
by the velocity of the group. The geometrical structure of
the pedestrian groups is determined by the necessity to main-
tain the focus on the walking direction, and for this reason
we will not consider non-moving pedestrian groups (i.e., data
points in which at least a group member hasvi(tk)< 500 ms,
a threshold that corresponds to a velocity 3 standard devi-
ations smaller than the typical pedestrian velocity (Daamen
& Hoogendoorn, 2006); see also (Zanlungo, Chigodo, et al.,
2012) for a discussion of this threshold). Since we collected
data in a passing point between a station and a shopping
centre without attraction points (Zanlungo, Chigodo, et al.,
2012), only≈ 5% of data are not considered.
It is clear that if auniversal and time stable n-p formation
exists, then at (almost) all times and for (almost) all groups,
the GCMF pedestrian positions should be close to those de-
termined by such a structure. We will compute the empirical
2D probability distribution function (pdf)ρ(x,y) for eachn
averaging on all groups, pedestriansi and and timestk, and
state that such auniversal and stable formation exists only
if ρ(x,y) hasn well defined maxima. The formation will be
then empirically determined by the position of these maxima.

Results
Whole group GCMF structure for n-p groups
Fig. 3 shows the pedestrian pdfρ(x,y) for 2-p, 3-p and 4-p
groups. The 2-p and 3-p groups have a well defined geometri-
cal structure in the GCMF, i.e. theirρ has, respectively, 2 and
3 well defined maxima, one for each pedestrian. Such a struc-
ture is not present for 4-p groups, whose pdf has many local
maxima. As we will see, a well defined structure emerges for
4-p only after the whole group is properly divided in two 2-p
sub-groups.

2-p groups
Let us identify the leftmost (x < 0) pedestrian asP1 and the
rightmost one asP2. Figs. 4a) and 4b) respectively show
the ρ(r1) and ρ(θ1) pdfs, while Table 2 shows the average
values and standard deviations of all variables. Whileρ(y1)
andρ(θ1) are well described by a Normal distribution (i.e. a
von Mises (Mardia & Jupp, 2009) one for the circular vari-
ableθ), ρ(x1) andρ(r1) are not, and for this reason we re-
port also the (approximate) value of their maxima. Our data

ρ(x1) ρ(y1) ρ(r1) ρ(θ1)
<> -387 -2 417 -89

σ 87 166 105 17
max -360 0 365 -90

Table 2: Average values (< >), standard deviations (σ) and
maxima for theρ(x1), ρ(y1), ρ(r1) and ρ(θ1) pdfs (linear
variables in mm, circular in degrees).

show that 2-p groups walk abreast at a distance smaller than
twice the average shoulder width (Pheasant, 1986). Such a
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Figure 3: ρ(x,y) for 2-p, 3-p and 4-p groups (respectively, from the left). Blue corresponds to maximum density, red to
minimum density (colour bar on the right). Each figure coversa 2×2 meters area.

configuration is determined by the need of maintaining both
partners in each other’s field of view (or better at the border
of it) while keeping the main attention focus on the walk-
ing direction. By walking abreast the partner is reachable for
gaze exchange and conversation through a torsion of the neck
(pedestrians can go on walking towards their goal with no
gait modification) while the distance allows for conversation
without collision or excessive proximity. This configuration
is the most comfortable one for walking and interacting so-
cially, but it cannot be extended to larger groups, because in
a n > 2 abreast configuration the position of first neighbours
would hinder gaze contact and conversation with second or
larger neighbours. As clear from Fig. 3 and discussed below,
this affects larger group configurations.

3-p groups

Let us name the pedestriansP1, P2 andP3 starting from the
leftmost to the rightmost (x1 < x2 < x3). It is easier to un-
derstand the relation between 2-p and 3-p group structures
if we analyse the 3-p variables in all possible 2-p sub-group
GCMFs. A variable with subscripti j will denote the position
of Pi in the (Pi,Pj) GCMF. In this way, for example, 2r12 is
the relative distance between the leftmost pedestrian and the
central one (first neighbours), and so on for each variable and
pedestrian pairi, j with i < j (the i > j case can be obtained
through eq. 7). Tables 3 and 4 report the values of all such
variables, while Fig. 5a) compares theρ(r12) andρ(r13) pdfs
to theρ(r1) distribution of the 2-p case. The same compari-
son is performed forθ in Fig. 5b).

The first neighbour distance distributionsρ(r12), ρ(r23) are

ρ(r12) ρ(r13) ρ(r23) ρ(θ12) ρ(θ13) ρ(θ23)
<> 437 738 441 -74 -89 -105

σ 125 132 169 23 15 25
max 365 700 365 -80 -90 -110

Table 3: Average values (< >), standard deviations (σ) and
maxima of the pdfρ for the polar 3-p group variables (r in
mm,θ in degrees).

very similar to the 2-p distance distribution, while the second
neighbour distance distributionρ(r13) may be very well rep-

ρ(x12) ρ(x13) ρ(x23) ρ(y12) ρ(y13) ρ(y23)
<> -342 -686 -344 114 1 -112

σ 104 155 112 257 278 263
max -350 -680 -350 70 0 -110

Table 4: Average values (< >), standard deviations (σ) and
maxima of the pdfρ for the Cartesian 3-p group variables (in
mm).
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Figure 4:a): 2-p pdf forr1. b): 2-p pdf forθ1, compared to a
best fit von Mises distribution.
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Figure 5:a): ρ(r12) distribution (blue) compared to theρ(r13)
distribution in green and to the 2-pρ(r1) distribution in or-
ange. b): ρ(θ12) distribution (blue) compared to theρ(θ13)
distribution in green and to the 2-pρ(θ1) distribution in or-
ange.

resented by a Normal one. Definingr as the valuer for which
ρ(r) is maximum, we see thatr13 ≈ 2r12 ≈ 2r23 ≈ 2r1, i.e.
3-p groups members try to maintain between them the same
distances that occur between 2-p groups members, which we
interpret as a strong sign of social interaction involving all
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three members. The similarity between theρ(θ13) and the
(2-p) ρ(θ1) distributions is particularly striking, suggesting
direct social interaction betweenP1 andP3. This interaction
would hardly be possible if we had the same angle distribu-
tion for θ12 andθ23, because the central pedestrian would hin-
der the communication. As a result, the central pedestrian
steps slightly back (so that their partners remain in the vision
field), and the angle between the three of them is, in aver-
age,≈ 150 degrees. This “V” configuration had already been
reported as the most often occurring one for walking triads
(Costa, 2010). (Moussaı̈d et al., 2010) explain this configura-
tion as the effect of a trade-off between easiness of commu-
nication and collision avoiding efficiency, assuming that the
free-walking triads walk abreast. On the basis of our data,
that as we already stated should not be strongly influenced by
environmental constraints, we suggest that the “V” configu-
ration is attained for maximum easiness of communication
between the three partners, and occurs even for freely walk-
ing pedestrians.

4-p groups
(Moussäıd et al., 2010) report that freely walking 4-p groups
assume an abreast configuration, that tends to bend in a “U”
one with growing pedestrian density, in order to avoid colli-
sions. According to thisabreast hypothesis, we should see
four clear maxima in a row in Fig. 3 on the right. Further-
more, if we name the pedestriansP1, ...,P4 with x1 < x2 <
x3 < x4 in the GCMF, the first neighbour variable distribu-
tions, such as

ρ f n(θ) = (ρ(θ12)+ρ(θ23)+ρ(θ34))/3 (8)

and the analogously definedρ f n(r), ρ f n(x) and ρ f n(y),
should resemble the 2-p group distributions. This hypothe-
sis is clearly not supported by our data (Figs. 6, 7b)). On the
opposite, (Costa, 2010) reports different geometrical struc-
tures for 4-p groups, but none of these seemsprevalent in our
data (no clear maxima in Fig. 3 right).
We may then use a differentsub-group hypothesis, assum-
ing that the 4-p group may be divided in two sub-groups of
2 pedestrians, with “strong interaction” inside the sub-group
and weaker interaction outside it. According to this hypoth-
esis, we may find auniversal and time stable structure only
at the sub-group level. Let us rename the pedestrians in the
following way. We nameP1 the pedestrian with the minimum
x value in the 4-p GCMF, and compute the point

p2 = x1+ rint êx (9)

whererint = 730 mm is the maximum for the pdf of distances
for 2-p groups (i.e. twice the GCMFr value reported in Table
2). We then nameP2 the pedestrian whose euclidean distance
to p2 is minimum, andP3 andP4 the remaining two. Let us
finally nameρsg(r), ρsg(x), ρsg(y) andρsg(θ) the pdfs for the
corresponding variables when averaged over all subgroups,
as in

ρsg(r) = (ρ(r12)+ρ(r34))/2. (10)

The average values and standard deviations for these distri-
butions are shown in Table 5, while Fig. 6 shows theρsg(x,y)
2D pdf, presenting two clear maxima. Fig. 7a) shows the
comparison between the pdfρsg(r) with the (2-p)r1 distri-
bution. Fig. 7b) performs the same comparison forθ vari-
ables, including also theρ f n(θ) (abreast hypothesis) distribu-
tion. The presence of two clear maxima inρsg(x,y) suggests

ρsg(x) ρsg(y) ρsg(r) ρsg(θ)
<> -403 -54 530 -97

σ 180 347 195 33
max -360 0 370 -90

Table 5: Average values (< >), standard deviations (σ) and
maxima of the pdfsρsg(x), ρsg(y), ρsg(r) andρsg(θ) (linear
variables in mm, circular in degrees).

Figure 6:ρsg(x,y) under the sub-groups hypothesis. The fig-
ure covers a 2×2 meters area.
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Figure 7: a): Comparison between the 2-p pdf forρ(r1)
in orange andρsg(r1) (sub-group hypothesis) in blue. b):
Comparison between the 2-p pdf forρ(θ1) in orange;ρ f n(θ)
(abreast hypothesis) in red; andρsg(θ1) (sub-group hypothe-
sis) in blue.

that auniversal andstable structure is indeed present at the
sub-group level. Theρsg(r), ρsg(x), ρsg(y) andρsg(θ) distri-
butions in a 4-p group result to be a “perturbed version” of
the “proper” 2-p variable distributions, the perturbationbeing
determined by the interaction with the members of the other
sub-group. We can give different interpretations for the ab-
sence of auniversal 4-p spatial configuration, that probably
act as con-causes. Since the completely abreast configuration
results to be uncomfortable even in the 3-p configuration, it
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results to be even more problematic for 4 pedestrians. A solu-
tion is to, in a way similar to the “V” 3-p configuration, walk
in a “U” or in a “staggered” configuration. Another solution
would be to walk on two different abreast rows, for example
roughly on the corners of a square. While this configuration
has the shortcoming that the members on the back are not in
the field of view of, nor can be comfortably watched by, the
pedestrians on the front, it has the strong point that reduces
the maximum distance between members of more than a fac-
tor 2, and it is more efficient in case of collision avoiding
or other environmental influences. If we observe particular
groups for a short time, as done by (Costa, 2010), we may
observe all these occurrences, but, as shown by Fig. 3 (right)
none of them isuniversal and time stable. What is stable
(Fig. 6) is the association of pedestrians in pairs. This does
not mean that this pairwise association is invariant (i.e. that
the pair composition does not change in time) but the data
suggest that this association is far more stable than the whole-
group structures. Even though we do not report a quantitative
analysis, we qualitatively observed a few 5-p and 6-p groups,
and noticed also for these groups the tendency to part in stable
2-p or 3-p sub-groups.

Conclusions and future work

Our observations lead us to the conclusion that the dynami-
cal constraints make social interaction between members of
walking groups difficult to attain for subgroups larger than
two units. For this reason, larger groups have a tendency to
form relatively stable 2-p subgroups. Obviously, since odd-p
groups cannot be divided in pairs without excluding a pedes-
trian, for 3-p (sub-)groups we find a configuration almost as
stable as the 2-p one.
Regarding the difference between our observations and those
of (Moussäıd et al., 2010), we could speculate on cultural
and environmental features. Nevertheless we believe that the
main difference may be operational, i.e. that our experimen-
tal setting using cameras and laser sensors allowed us to iden-
tify sub-groups of pedestrians as part of larger groups, even if
their interaction was limited in time. On the contrary, obser-
vation methods based on shorter time windows may be biased
towards large spatial configurations, because they would tend
to consider sub-groups as separate entities. For this reason,
despite these differences with previous works, and the lim-
ited amount of data for large groups, we may speculate that
our work is universal in showing that 2-p and 3-p sub-groups
are far more stable than larger configurations, with possible
effects on the behaviour of crowds.
In our future work we plan to analyse the dynamical features
that have been ignored in this work. In detail we want to
study: 1) how pedestrians in (sub-)groups behave away from
the equilibrium configuration, and 2) the time stability of,and
interaction between, sub-groups inside a larger group. Such
an analysis should bring further insight on the social dynam-
ics of walking pedestrians and allow us to extend pedestrian
group models in such a way to describe the findings of this

work.
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