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Abstract Safe navigation is a fundamental capability
for robots that move among pedestrians. The traditional
approach in robotics to attain such a capability has treated
pedestrians as moving obstacles and provides algorithms that
assure collision-free motion in the presence of such moving
obstacles. In contrast, recent studies have focused on pro-
viding the robot not only collision-free motion but also a
socially acceptable behavior by planning the robot’s path to
maintain a “social distance” from pedestrians and respect
their personal space. Such a social behavior is perceived as
natural by the pedestrians and thus provides them a com-
fortable feeling, even if it may be considered a decorative
element from a strictly safety oriented perspective. In this
work we develop a system that realizes human-like collision
avoidance in a mobile robot. In order to achieve this goal, we
use a pedestrian model from human science literature, a ver-
sion of the popular Social Force Model that was specifically
designed to reproduce conditions similar to those found in
shopping malls and other pedestrians facilities. Our findings
show that the proposed system, which we tested in 2-h field
trials in a real world environment, not only is perceived as
comfortable by pedestrians but also yields safer navigation
than traditional collision-free methods, since it better fits the
behavior of the other pedestrians in the crowd.
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1 Introduction

Safe navigation for mobile robots remains a major research
topic in robotics. Due to recent progress in fields such as
localization techniques, robots are now much more capable
of moving in real-world environments, enabling applications
such as guiding people in museums [1,2] and supermarkets
[3], or delivery to offices [4].

Collision avoidance with respect to humans is an essen-
tial element for safe navigation in human environments. The
traditional approach to robot collision avoidance considers
people as moving obstacles and applies collision-avoidance
techniques. Various planning [5–8] and prediction [9–12]
techniques have been developed, and robots are capable of
planning their trajectories to avoid undesired physical contact
with pedestrians.

However, we have experienced some difficulties when
using traditional collision-avoidance methods in real-world
environments. Figure 1 shows one of these troublesome cir-
cumstances, in which a pedestrian initially did not notice
the robot, and, when he eventually saw it, was surprised and
jumped aside to avoid it. In this setting the robot was cor-
rectly following a collision free trajectory, but its behavior
was not perceived as safe by the pedestrian. This and sim-
ilar potentially unsafe conditions, or better, conditions that
convey a feeling of being unsafe to people, usually arose
when pedestrians perceived the robot only when it was quite
close to them. Even if they did not lead to any collision, they
cause abrupt motions in pedestrians, that may be potentially
dangerous.

In this paper we are going to pose, and test, the hypothesis
that human-like collision-avoidance is indispensable to avoid
these situations that are perceived as dangerous by pedestri-
ans, and that, by causing sudden reactions, may be potentially
unsafe. We will thus claim that human-like collision avoid-
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Fig. 1 The video frames and the illustrations show a real world situa-
tion in which using a traditional collision-avoidance method generated
a possibly unsafe situation. a Initially, the pedestrian did not notice the
robot. b then he unexpectedly found the robot in front of him and felt
unsafe although the robot had already started to avoid him; c as a con-
sequence the pedestrian quickly moved aside and d looked at the robot
with surprise

ance is indispensable for robots to safely navigate among
pedestrians, who expect other moving agents (pedestrians
or robots) to follow given “social norms”. An agent that
does not respect such social norms, despite having a good
planning capability for collision-free motion, would be per-
ceived to behave unexpectedly and generate possibly unsafe
behavior. While human behavior can involve complex cogni-
tive processes, human science studies show that the resulting
collision avoidance trajectories can be reproduced to a good
extent using simple models in which each agent (i.e., pedes-
trian) only reactively avoids local collisions [13].

In this paper, we apply the pedestrian model introduced
by [13], and briefly described in appendix, which was explic-
itly developed for relatively low-density situations like those
occurring in a shopping mall, to achieve collision avoid-
ance in a differential drive wheeled robot with a humanoid
torso, navigating through a human environment. The mer-
its of using the pedestrian model are twofold: first, since it
is a model of human social behavior, it is likely to produce
human-like motion in a robot and thus provide comfortable
feelings to pedestrians in collision avoidance, as previous
studies [14,15] have shown. Second, since the pedestrian
model was developed to describe many-person settings, it
can be easily applied to such situations, that were not tack-
led or resulted in expensive path planning computations in
the previous attempts to develop socially acceptable navi-
gation systems. On the other hand, the implementation of
the pedestrian model on the robot is not straightforward due
to the limited perception and locomotion capabilities of the
machine with respect to the human ones.

After determining which parameters values should be used
in the robot version of the model in order to obtain trajecto-
ries as similar as possible to the pedestrian ones, we explicitly
verify that our system is perceived as safer than traditional
avoidance methods. We first test it in single-person settings

and ask to participants to rate its performance compared to
a traditional avoidance method, and then operate it in a real
world environment to test that it does not cause any poten-
tially unsafe situation.

2 Related Work

2.1 Collision-Free Navigation

Collision-free navigation techniques have been extensively
studied in robotics. A basic method is the dynamic win-
dow approach [5], whose extension and development have
been widely researched. Stachniss and Burgard [6] inte-
grated path-planning into collision avoidance, and Seder
and Petrovic developed the time varying dynamic window
(TVDW) method by considering moving obstacles [7]. While
the dynamic window approach mainly takes into account a
small neighboring area around the robot (usually a “stop dis-
tance” within which the robot can stop), other approaches,
such as collision cones [8] and velocity obstacle [16], con-
sider the motion of objects far from this neighboring area.
Many techniques have also been developed to make plan-
ning computationally feasible, including the D-Lite algo-
rithm [17].

Research efforts have also improved the prediction accu-
racy of people’s future behavior. A basic method to predict
future behavior is to perform a velocity-based linear pro-
jection [7,9] while other researchers have used a pedestrian
model to predict people’s future behavior more accurately
in tracking [10]. These methods provide reasonable approx-
imations for short-term behavior, but they are not reliable
for long-term prediction; to overcome this limitation, some
researchers have used statistical knowledge from a large
amount of previously observed trajectories in the environ-
ment [11,12].

Another approach is to refer to a model of people’s behav-
ior for planning or prediction. Henry et al. [18] proposed a
method to learn an effective planning of robot navigation in
a crowded environment using a pedestrian crowd simulator,
while Tamura et al. [19] used a pedestrian model to predict
people’s collision avoidance toward the robot, allowing the
latter to better avoid pedestrians. Ratsamee et al. [20] real-
ized a collision avoidance behavior that uses a pedestrian
model taking also in consideration the body pose and face
orientation of pedestrians.

Such planning and prediction techniques can provide
collision-free trajectories to robots, but they do not neces-
sarily generate a behavior that resembles people’s collision-
avoiding strategies and norms. On the contrary, the purpose
of this study is not to use the pedestrian model as a predic-
tion tool, but to explicitly introduce a human like collision
avoidance behavior in the robot in order to make its naviga-
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tion perceived as more natural and thus to avoid potentially
unsafe situations.

2.2 Human-Like Social Behavior in Navigation

Following the seminal work of Hall [21] on human inter-
actions, a few recent studies in robotics have reproduced
human-like social behavior in human-robot interaction.
Some of these works focused on the importance of prox-
imity and reported, for example, that people try to maintain
a 0.45–1.2 m distance when interacting with a robot [22,23],
and a motion planning technique considering such psycho-
logical constraints has been developed [14]. Pacchierotti et
al. [15] developed a robot that avoids intruding into the per-
sonal space of a walking person by starting to deviate from
its path 6 m from the on-coming person to create space.
Kirby et al. [24] proposed a constraint-optimizing method
for person-acceptable navigation for a mobile robot, which
considers personal space as a social convention. Pandey and
Alami [25] have developed a framework towards a socially
aware mobile robot by considering social conventions such as
human proximity guidelines and clearance constraints. Qian
et al. [26] have developed a framework for human-compliant
robot navigation which considers a set of safety strategies to
gurantee human physical safety and mental comfort.

From a different perspective, Lichtenthaler et al. [27] have
focused on legibility and perceived safety in crossing situ-
ations and show the effectiveness of legible motion in pro-
viding impressions of safety. Rios-Martinez et al. [28] have
developed a navigation method considering human comfort,
by using a stochastic and adaptive optimization algorithm.
Moreover, several learning approaches are proposed; Henry
et al. have used inverse reinforcement learning to learn navi-
gation behavior from a huge amount of example paths. They
confirmed the effectiveness of the approach by using a real-
istic crowd flow simulator [18]. Also Luber et al. [29] take a
learning approach by using paths of people in public space
to realize socially-aware robot navigation.

However, these previous approaches suffer of two limi-
tations. First, they address only single-person situations and
are difficult to apply to interactions with many people, which
are clearly the case in real-world settings. Second, it has not
been investigated whether these human-like behaviors are
indispensable for safe navigation, or if they are just decora-
tive elements not required to safely deploying mobile robots
in daily environments.

The present study addresses these two issues by using a
pedestrian model that allows reproducing human-like behav-
ior even in many-person settings, and by testing the pro-
posed system in a real world environment to reveal whether
such human-like behavior is indispensable for safe naviga-
tion, checking if its more natural behavior avoids generating
sudden and potentially unsafe motions in pedestrians.

3 Using the Pedestrian Model for Socially Acceptable
Collision Avoidance

3.1 Problem Definition

The purpose of this paper is: To investigate the effect of the
introduction of a human-like collision avoiding system for
the deployment of a robot in a real world human pedestrian
environment. The proposed collision avoidance system has
thus to be able to avoid the pedestrians in a way that is per-
ceived as natural and safe by them. Furthermore, the system
has to be stable enough to be deployed in safety in a real
world environment, and the presence of the robot in such
an environment has not to generate sudden and potentially
dangerous motions in the surrounding pedestrians.

In order to accomplish this goal we need to:

1. Calibrate a human-like collision avoidance model for our
robot based on the results of [13] we assume that the CP-
SFM model (specified by Eqs. (1) and (3), see appendix)
gives a good enough approximation of the pedestrians’
avoidance strategy, at least for navigation in a shopping
mall or similar environment. To account for specific inter-
action patterns with our robot, we perform experiments
in which human subjects interact (avoid a collision) with
our robot, and use the method of [13], as described in
Sect. 1, to find the values of parameters Ar and Br that,
substituted in Eq. (3), better describe how pedestrians
avoid our robot (Sect. 3.3). Our hypothesis for the imple-
mentation of an avoidance system considered as natural
and safe by the pedestrians is to reproduce in the robot
the same avoidance behavior that pedestrians had with
respect to it in the calibration experiment. In order to do
that, we will correct the parameters Ar and Br to values
Arc and Brc that account for limitations in the robot’s
motion (Sect. 3.4).

2. Provide a safety system we use the CP-SFM model to pro-
vide a collision avoidance felt as natural and safe by the
pedestrians, but this method has not been developed to
provide a safe navigation for a robot system in the sense
discussed by [30]. For this reason we provide our method
with a backup safety system using the well-known tradi-
tional planning method for safety of [7] (Sect. 3.5).

3. Evaluate the perception that pedestrians have about the
collision avoidance behavior of the robot we perform
controlled experiments with subjects to confirm that our
system, which has been developed to behave naturally,
i.e. in a human like manner, is well perceived by pedes-
trians. During the experiments we compare our method
with an efficiency oriented one, and ask to the subjects
to rate how comfortable their interaction with the robot
was (more specifically, if they could walk keeping their
preferred velocity, if they felt their path to be collision
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free, and what was the overall evaluation of the robot’s
behavior; Sect. 4.1).

4. Test that the robot can be safely deployed in a real envi-
ronment we conduct a field test to confirm that our robot
may safely navigate a pedestrian environment; further-
more we compare it to a traditional avoidance method to
test that it produces less sudden motions in the surround-
ing pedestrians (and thus less possibly unsafe situations;
Sect. 4.2).

To accomplish tasks 1 and 2 we rely on previous contribu-
tions [7,13], that have nevertheless to be adapted to our sys-
tem. Task 3 resembles the investigation performed by [15],
while task 4 may be considered the main original contribu-
tion of our work. As described in Sect. 4.2, our main criterion
for evaluating the safety of the robot system is to test that it
may be deployed in the environment without disrupting the
normal flow and behavior of surrounding pedestrians; see our
discussion in Sect. 4.2 for a comparison with the usual mean-
ing given to the term safety in robot navigation, as defined
for example by [30].

Obviously this paper does not completely fulfill all the
requirements for a safe and socially acceptable navigation
system that may be used in a real world environment for
practical applications, and in Sect. 5 we discuss the problems
that have to be coped with before achieving such a goal.

3.2 Hardware

We used a 120-cm-tall, 60-cm-wide humanoid torso robot
whose mobile base is a Pioneer 3-DX (Active Media), at a
maximum velocity of 750 mm/s and a preferred velocity of
700 mm/s (the maximum acceleration is 600 mm/s2). The
pedestrian model needs information about people’s positions
far from the robot, which is not easy to collect using only the
robot’s on-board sensors. Thus, we used eight laser range
finders and applied the human-tracking system described in
[31].

3.3 Calibrating the Social Force toward the robot: H–R
(Human–robot) Model

We specifically calibrated the pedestrian model on human-
robot interaction with our robot to account for the poten-
tial differences in the collision-avoiding behavior between a
pedestrian and the robot with respect to the inter-pedestrian
interaction.

In the data collection experiments, performed in a shop-
ping mall corridor, the robot moved straight toward a par-
ticipant at 700 mm/s, and the participant walked toward the
robot starting from a distance of 18 m. Participants were
instructed to walk freely toward a goal located behind the
robot, but were informed that the robot would not change

its course to avoid collisions. Fourteen subjects participated
to the experiments, each participant repeating the trial nine
times. We used the genetic algorithm described in Sect. 1
to select the parameter values that maximize the similarity
among the trajectories generated from the pedestrian model
and those obtained in the data collection.

Calibration yielded parameter values Ar = 0.62, Br =
1.07, which generate a collision avoidance behavior that does
not qualitatively differ from the inter-human values of [13]
(Ah = 1.13, Bh = 0.71), at least for the head-on encounter
experiments that we performed to calibrate the robot. More
in detail, since Ah > Ar , the maximum interaction intensity
is lower towards robots, but since Br > Bh the interaction
range with robots is wider. It is nevertheless important to
notice that for the head-on experiments, the interaction dis-
tance d ′

i j of Eq. (3) is typically in the order of ≈ 1 meter,
for which the (Ah, Bh) and (Ar , Br ) parameters yield very
similar values. We may thus assume that the behavior of
pedestrians with respect to our robot is basically equivalent
to the inter-pedestrian one, even if we refer to Sect. 5 for
a discussion of the limitations concerning the use of only
head-on encounters for calibration.

3.4 Calibrating the Force Taking into Account Locomotion
Capabilities

In our study, position information is provided by the envi-
ronmental human-tracking system [31], while the robot con-
troller (Fig. 2) converts the output of Eq. (3) into velocity
commands to navigate the robot. Namely, the pedestrian
model outputs the effect of the social forces as an update
in the Cartesian velocity (vx , vy), and the controller trans-
lates it into a polar coordinates velocity command (vp, ωp)
to be implemented in the wheeled locomotion used in our
robot. To compute the target velocity, the system should ide-
ally use the H–R parameter values in Eq. (3) However, the
robot’s motion capability is limited by its hardware (e.g.,
slow acceleration and inability to move aside by being a
differential drive robot), while limitations and delays in the
perception system may affect the computation of the interac-

Fig. 2 Overview of our framework
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tion forces. For these reasons a straightforward application
of Eq. (3) with the H–R parameters (Ar , Br ) by the robot
controller may result in real robot trajectories quite different
from those that would result from a numerical integration of
the equation using Ar , Br (we will refer to this latter trajec-
tory as the “ideal trajectory”, meaning the trajectory that the
robot should ideally follow in order to resemble the behavior
of pedestrians in the experiment of Sect. 3.3).

To compensate this difference, we further calibrated the
values of the pedestrian model parameters to obtain in the
real robot system a trajectory as similar as possible to the
“ideal” one. In order to do that, we numerically computed a
few trajectories in different settings using the “ideal” H–R
model (Eq. 3) and fixed the parameter values used by the
robot controller so that the motion of the real robot was as
close as possible to the ideal one. As a result, we found that
both the intensity and range of the social force for the real
robot should increase to Arc = 0.93, Brc = 1.61 (robot
controller parameters), which are 1.5 times larger than the
original H–R model parameters, in order to reproduce as
faithfully as possible the ideal trajectories in the real robot
system.

3.5 Safety System

The collision avoidance system described by Eqs. (1) and
(3) has not been designed to be safe in the sense discussed in
[30]. While the system described by the equations is arguably
collision free in the pedestrian density of interest for the scope
of this work, this is true for the noiseless “ideal” trajectories,
and could fail when implemented in a robot with specific
motion and sensor limitations. Furthermore, the model has
not been designed to deal with pedestrians whose behavior
is very far from the norm (for example, very low attention
levels, or possibly dangerous curiosity driven approaches to
the robot). For these reasons we introduced in our system a
backup safety check.

In detail, the polar coordinate (vp, ωp) velocity command
computed by the robot controller is examined using a safety-
check mechanism. We implemented this safety system using
the TVDW method [7], whose window time was set to 1.5 s,
a time interval long enough to stop our robot. For the safety
implementation, the pedestrian future positions were pro-
jected using their average velocity from the previous 0.5 s.
These parameters were chosen on the basis of the maximum
acceleration and velocity of the robot, along with the pre-
cision of the tracking system. In detail, since the maximum
velocity of the robot is 750 mm/s, and the acceleration is
600 mm/s2, the robot can stop in 1.5 s even if a 200 ms delay
occurs. We also empirically verified that a 500 ms average
over the velocity output of the tracking system provides the
best information about the pedestrian velocity, by filtering
out noise.

The TVDW method uses the robot’s and pedestrians cur-
rent velocities to project their positions in the future and
computes a safe but maximally efficient path for the robot.
It does not include notions of “socially acceptable distance”
like those investigated by [15], so in a head-on approach like
those of Sects. 3.3 and 4.1 it will have a tendency to deviate
later and less than our method (or not to deviate at all, if the
pedestrian avoids the robot in advance). As a result we may
expect, in normal conditions, the safety system to have very
little or no effect on the robot’s motion.

4 Evaluation

We conducted two different evaluation tests, in which we
compared the proposed method with the efficiency oriented
one of [7], which was implemented using the same parame-
ters of the safety system described in 3.5.

1. Evaluate the perception that pedestrians have about the
collision avoidance behavior of the robot: we use a
controlled experiment with head-on collision setting, in
which the subjects are asked to rate the collision avoid-
ance behavior of the robot. The purpose of this exper-
iment is to test and evaluate our system in a simple
scenario before deploying the robot in an uncontrolled
real world environment, and also to reproduce the results
found by [15] while using a rule-based model under a sim-
ilar single person controlled setting (the main difference
between our scenario and theirs is that in our work also
the controlled experiments with subjects were performed
in a real world environment, and not in the laboratory).

2. Test that the robot can be safely deployed in an uncon-
trolled real environment: we conduct a field test to con-
firm that our robot may be operated in a real world envi-
ronment without disturbing the natural flow of pedestri-
ans. In the scope of this experiment, our definition of
safety diverges from the one of [30]; we are interested
to check the occurrence of situations in which the robot
causes sudden and possibly dangerous movements in the
surrounding pedestrians.

4.1 Evaluation of Comfortable Feeling

4.1.1 Method

The evaluation was conducted in the same shopping mall
corridor used for data collection. Participants freely walked
toward a goal, while a robot moved from that goal toward
the point from which the participant started walking, i.e. the
robot and pedestrian had to avoid each other to reach their
target. Participants started walking at a 18 m distance from
the robot.
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Fig. 3 Impressions from participants

The experiment was conducted as a within-subjects
design, and the order of the sessions was counter-balanced. 25
Japanese subjects participated in the experiment (14 females
and 11 males, average age 23.1 years with S.D. 5.6 years)
and filled out a questionnaire for each session after reach-
ing the goal. In the questionnaire participants graded their
impressions of the behavior of the robot towards them on a
1-to-7 point scale, where 7 stands for the most positive, 4 is
neutral, and 1 is the most negative impression, based on the
following criteria: 1) obstruction-free, 2) their own ability to
maintain their preferred velocity, and 3) overall evaluation.

4.1.2 Result

Under the TVDW condition, the average speed of the robot
was 0.65 m/s and the one of the pedestrians was 1.17 m/s. The
average minimum distance between the robot and pedestrians
was 0.76 m. Under the proposed condition, the average speed
of the robot was 0.65 m/s and the pedestrian velocity was
1.16 m/s, while the average minimum distance between the
robot and pedestrians increased to 0.87 m.

Figure 3 shows the questionnaire results. We conducted
a pair-wise t-test for each item of the questionnaire. There
were significant differences between the impression of the
pedestrians when interacting with the robot using the pro-
posed method or with TVDW; in detail, for obstruction-free
we have (t (25) = 3.231, p = .004, r = 0.54), regarding
whether they were able to walk at their preferred velocity we
have (t (25) = 3.180, p = .004, r = 0.54), and for over-
all evaluation (t (25) = 2.964, p = .007, r = 0.51). The
results suggest that the pedestrian model was fit to the partic-
ipants’ natural way of walking and allowed them to walk at
their preferred velocity, and for these reasons they perceived
the robot as obstruction-free.

Figures 4 and 5 show the average robot and participant tra-
jectories during the collision-avoiding experiment. The robot
started moving from the left side, and the participant started
from the right side. Under the proposed method condition, the
robot started deviating from its straight trajectory after four
seconds, i.e., at a distance of approx. 8 m from the pedestrian,
a value in agreement with the one reported in [15]. On the

Fig. 4 Average trajectories under the proposed method

Fig. 5 Average trajectories under the TVDW method

other hand, under the TVDW condition, the robot’s collision-
avoiding behavior occurred much later: after t = 8 s, nei-
ther the robot nor the pedestrian had deviated from their
straight path. Under this condition the pedestrian deviated
more strongly from the straight path (at t = 12 s), and the
robot’s collision-avoiding behavior was reduced.

An analysis of these average trajectories suggests that
while under the TVDW condition the collision avoiding load
was mainly on the pedestrian, that clearly felt the robot’s
avoiding behavior to be too reduced or too delayed, under the
proposed method the collision avoidance load was mainly on
the robot. As a result, as shown by the results of Fig. 3, the
pedestrians felt obstruction-free and could walk with their
own preferred velocity. The method of [13] is intended to
take in account the reciprocity in collision avoiding when
calibrated on pedestrian-pedestrian interactions (see also [32]
about the importance of reciprocity). Nevertheless, our cal-
ibration process on single person human-robot interaction
seems to have led to an anticipation of the collision avoid-
ance behavior on the robot’s part, which is well perceived by
the pedestrians. The evaluation of Sect. 4.2 will show that
our robot does not “over-avoid” the pedestrians and can be
stably deployed in a multi-person real world environment.

4.2 Field Test of Safety in Navigation

4.2.1 Method

This evaluation was conducted as a field trial in a shopping
mall, and thus the robot did not interact with instructed sub-
ject, but with uninstructed pedestrians of a real world crowd.
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Fig. 6 Map and image of the field trial site

The robot was placed in a 10 × 20 m area of a large corridor
(Fig. 6) bordered on both sides by restaurants and a variety
of shops. The visitors were mainly families, couples, and
sightseers, all of whom could freely walk down the corridor.
The robot was autonomous in the experiments except for the
start signal sent by an operator to trigger it to move. After
sending the signal, the robot started to move from points A/B
to B/A fully autonomously. We defined a single movement
from these points as one trial.

Our aim was to reveal whether the robot could navigate in a
socially acceptable way in a real-world environment, without
disrupting the normal flow of the crowd by causing abrupt
motions in the surrounding pedestrians. For simplicity sake’s
we name such situations as “unsafe”, even if this is not the
usual meaning assigned to this term in robot navigation [30].
We video recorded the scene of the field trial, and we relied on
two coders to understand if the robot was causing any “unsafe
situation”. In detail, for each human robot “encounter”, i.e.
for each person who passed within 5 m from the robot, we
determined whether the robot’s behavior was safe for the
pedestrian using the following criterion:

– The robot behavior was judged unsa f e if the pedestri-
ans appeared to feel themselves to be in an unsafe situa-
tion, e.g., about to collide with the robot, and quickly
changed their walking speed and/or moving direction
(e.g., jumped aside) to avoid the robot;

– Otherwise, the robot’s behavior was coded as sa f e.

Figure 8 shows an example of unsafe behavior.

4.2.2 Result

In the evaluation, we conducted a 2-h test for each condition,
each test consisting of 27 trials. Under the TVDW condition,
there were 168 encounters, i.e. 168 visitors walked within 5
m from the robot, while under the proposed method condi-
tion, there were 160 such encounters. Two coders classified
the interactions between all 328 visitors and the robot as
safe or unsafe by observing the recorded videos. Cohen’s

Fig. 7 Safe behavior under the proposed method

kappa coefficient was 0.89, indicating that their observations
were highly consistent. Moreover, for consistent analysis,
they discussed and reached a consensus on all the observed
situations.

As a result, six behaviors over 168, i.e., 3.6% of the
encounters, were coded as unsafe under the TVDW con-
dition, but no unsafe behavior was found when using the
proposed method. A χ2 test revealed significant differences
in the ratio of the occurrence of unsafe behaviors (χ2(1) =
5.821, p = .030).

The experiment results revealed that the robot using the
proposed method is perceived as safer than the alternative
method, suggesting that when using the pedestrian model
the robot moves similar to humans and gives the impression
of performing socially acceptable collision-avoiding. As a
result the proposed method does not disrupt the normal flow
of the crowd by causing sudden motions in the surrounding
pedestrians. This consideration is supported by the obser-
vation of some scenes in which pedestrians and the robot
collaboratively avoided collisions (Fig. 7). In this scene, the
robot approaching two pedestrians starts to change its moving
direction a few seconds before reaching the contact distance;
at the same time the robot does not deviate very strongly
from its trajectory, but does it in such a way that the col-
lision is smoothly avoided through the collaboration of the
two pedestrians, who deviate from their trajectories in a sim-
ilar way. Such a behavior (anticipating the collision-avoiding
behavior in order not to surprise the opponent, and enhanc-
ing collaboration from other pedestrians) is an example of
socially acceptable avoidance behavior. This “social norm”
was not explicitly introduced in the pedestrian model, but was
implicitly coded in the parameter values through the learning
process based on human trajectories.

In contrast, the unsafe behaviors generated by the TVDW
method appear to reflect the lack of any attempt to repro-
duce such a socially acceptable behavior. This method plans
a trajectory that is assured not to collide with pedestrians
by assuming them to be moving obstacles with constant
velocity, an assumption that results to be strong enough to
provide collision-free navigation. As expected, this method
never caused collisions and was coded as “safe” (accord-
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Fig. 8 Unsafe behavior under the TVDW method

ing to the meaning given to this term in this section) in the
large majority of the encounters (96.4 %) during the exper-
iment. However, despite being collision free, the robot was
sometimes perceived as unsafe by the pedestrians, since it
might not correspond to the expected “social norm”. Figure
8 shows a scene coded as unsafe. Here the pedestrian started
to slightly deviate from his course before getting close to the
robot (Fig. 8-left). The robot waited to avoid the pedestrian
until reaching a close distance, where it stopped and started
to turn right (Fig. 8-middle). This behavior was felt as unsafe
by the pedestrian, who probably expected the robot to start
to deviate much earlier and more smoothly. The pedestrian
eventually almost jumped aside to avoid the robot (Fig. 8-
right). The occurrence of such a possibly unsafe situation
suggests that the robot’s behavior was not socially accept-
able.

We further analyzed how the robot behaved in more
crowded situations. Figure 9 shows a scene in which the
proposed method successfully navigated the robot in a many-
people setting. The robot was initially heading toward a group
of people, which yielded a social force strong enough to make
the robot turn right to avoid all of them. After avoiding the
first group, the robot again changed its moving direction to
successfully avoid a second group. This example illustrates
that the proposed method reproduces human-like collision
avoidance even in many-people settings.

In contrast, the TVDW method generated awkward sit-
uations in multi-people settings. Figure 10 shows a situa-
tion in which the robot controlled by the TVDW method
headed toward a group of pedestrians. It passed through the
group, since the pedestrians yielded before the robot started
to change its motion to avoid them. The members of the group
had to part to allow the robot to pass, a situation that is sel-
dom observed in inter-pedestrian interaction. The collision-
free computation of the TVDW method was performed cor-
rectly in this situation, since at the moment the pedestrians
parted to avoid the robot, the latter had still plenty of time to
modify its trajectory to avoid the collision. Nevertheless this
collision-avoiding behavior occurred too late to be perceived
as acceptable by the pedestrians.

Fig. 9 Video frames and illustration of a situation in which the robot
safely navigated through a crowd using the proposed method

Fig. 10 Video frames and illustration of a situation in which some
pedestrians had to part to avoid the robot using the TVDW method

5 Discussion

5.1 Alternative Methods for Safe Navigation

In this research work, in order to attain a safe collision-
avoidance movement for the robot, we used a pedestrian
model as a compact method to reproduce human-like and
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thus socially acceptable collision avoidance behavior for a
robot deployed in a pedestrian crowd. A similar result could
probably be reproduced using different methods as, for exam-
ple, a motion planning method with constraints about social
distance or personal space. We nevertheless stress that intro-
ducing the concept of social space in a motion planner, even
if done in accordance with social studies, does not imply nec-
essarily realistic behavior in a multi-person setting. Concepts
as social distance are usually introduced for two people situ-
ations and very often for static settings. Thus the introduction
of these concepts in a motion planner has to be performed
with a calibration on real pedestrian trajectories, which may
be a non-trivial process.

We believe that using a pedestrian model calibrated on
actual pedestrian behavior is a relatively easy way to effec-
tively reproduce human-like collision-avoidance in the robot.
Since the pedestrian model uses simple equations to calculate
the social forces to represent human-like collision-avoidance
movements, it is not only simple to implement and efficient
from a computational point of view but also more stable to
environmental changes than traditional approaches that use
relatively complex equations. As written above, the pedes-
trian model calculates the social force based on collision pre-
dictions (CP) with regards to people. Therefore, it is robust to
changes of the density in the environment, while a traditional
approach for safe navigation might need fine tuning of many
parameters to be used at different densities. Some previous
studies required explicit learning about the environment to
be able to predict people’s future behavior, e.g., where peo-
ple would go and how they would walk [33–35]. Since our
method only performs a simple velocity-based prediction, it
does not require previous knowledge or learning of the envi-
ronment properties. Based these considerations, we think that
using a pedestrian model as the one proposed in this work is
an appropriate way to attain human like collision avoidance
for a robot moving in pedestrian facilities.

5.2 Future Work

This work deals with socially acceptable collision avoidance
with respect to pedestrians in a possibly dense but open envi-
ronment. In order to safely navigate the robot in a pedestrian
facility, all the aspects of navigation have to be developed,
such as global path planning, and collision avoidance with
respect to non-human obstacles of different size and veloc-
ity. Others issues could be investigated and represent possible
future research topics:

1. Pedestrian social norms In this paper we coped with the
development of a socially acceptable navigation system
for a mobile robot, but our approach was based on the
analysis of dynamical features of pedestrian trajectories,
under the assumption that in a collision avoidance maneu-

ver the behavior of the involved pedestrians is completely
symmetrical. Nevertheless human behavior is more com-
plex, due to the presence of a few social norms. For exam-
ple pedestrians are known to have a culturally dependent
tendency to walk on the left or right side of a corridor
[36], which seems to be connected to a bias in collision
avoidance [37]; there are usually some social priorities
involved in deciding who has to give the way [38]; fur-
thermore social groups are an important component of
pedestrian crowds [39], and the correct behavior with
respect to this groups has to be taken in consideration,
and introduced in the pedestrian model. Recently, Zan-
lungo et al. [40] have reported that Japanese pedestrians
have a tendency to avoid on the left and overtake on the
right, with effects on the density and velocity distribu-
tions, and extended the CP model in such a way to cope
with this social norm. The same authors introduced also
a SFM based description of the behavior of small social
pedestrian groups [41].

2. HRI model The pedestrian model used in this paper only
considers people’s goal-directed and collision-avoiding
behaviors, while ignoring other social activities that
humans may perform in pedestrian facilities. Thus, any
pedestrian behavior that goes beyond the model would
break the assumptions under which our system works. A
case of particular interest for robot studies regards those
pedestrians that actively approach the robot to interact
with it. Such human-robot interaction behavior is not
modeled in this study. We consider that, for safe navi-
gation, developing such a model is not mandatory, since
people who intentionally approach the robot are obvi-
ously aware of its presence, and thus we may expect
that they do not behave dangerously from a navigation
point of view. Nevertheless the development of a model
of these people’s behavior will be indispensable when
actually deploying a robot to provide services in a pedes-
trian environment.

3. Evaluation The current paper bases its evaluation criteria
entirely on subjective metrics (questionnaires, coders).
Other works ([42,43]) use more quantitative criteria to
evaluate the easiness of walking of pedestrians, criteria
that could be introduced in the evaluation of a “socially
acceptable” pedestrian system as the one proposed in this
work.

5.3 Limitations

Finally, we may discuss some limitations of our approach,
whose solution may also be the subject of future research
work

1. The learning set Even if we assume that Eq. (3) correctly
describes human-like behavior, we need a good learning
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set of pedestrian trajectories around the robot in order to
use the method of [13], or an equivalent learning algo-
rithm, to extract the correct interaction force function
(i.e., parameters Ar , Br ). The trajectories of our con-
trolled experiments in Sect. 3.3 are far from fulfilling the
definition of a large enough learning set (the robot was
interacting with a single pedestrian, the pedestrian was
always coming from an head-on direction, and the robot
was moving straight, i.e. it was not interacting). Design-
ing multi-person setting experiments as those used for
inter-pedestrian model calibration in [13] is not trivial,
due to the robot motion limitation with respect to the
pedestrians, and to the problem of defining the robot’s
avoidance behavior during the experiments (since in prin-
ciple such a behavior has to be determined by the same
experiments). One solution could be to deploy the robot
using the collision avoidance parameters obtained in this
work in a shopping mall, and use the trajectories of the
pedestrians around the robot as a learning set, even if this
approach implies the use of a very high quality tracker in
a real world setting.

2. Calibration to different robots The parameters for the
robot collision avoiding system that we obtained in this
work were determined through experiments involving a
particular robot model interacting with Japanese people.
Since evidence suggests that people maintain different
distances depending on the robot’s appearance [44] and
cultural factors [36], the method might need to be re-
calibrated before being applied to different robots and
cultures. For example, in our experiments of Sect. 3.3,
pedestrians avoided the robot in a way similar to the one
with which they avoid other pedestrians; such a behavior
is surely influenced by the fact that our robot’s size is
similar to the human size, and probably also by the robot’s
reduced velocity.

3. Environmental sensors For this work we relied on envi-
ronmental sensors for tracking the pedestrians around the
robot. We believe that our system can be used also with
only on-board sensors, but it has to be expected that the
capability of tracking surrounding pedestrians would be
reduced. It is not easy, using just theoretical arguments,
to predict the range of usage, in terms of pedestrian den-
sities, of the on-board system, and how it compares to
the environmental sensors one, but it has to be expected
that the former one will be more limited. Such a ques-
tion has to be assessed in order to develop a completely
autonomous navigation system.

6 Conclusion

This paper reports a system for safe and comfortable collision
avoidance toward people by a mobile robot using a pedes-

trian model. We used a particular specification of the Social
Force model, CP-SFM, which has been explicitly developed
for such low-density settings as those normally found in a
shopping mall corridor, to reproduce human-like collision-
avoidance behavior in robots. We first tested the developed
robot in a single-person setting to confirm that it provides
a comfortable feeling to pedestrians. The results suggest
that a robot using the proposed method is significantly more
socially acceptable than one using an alternative traditional
method. Second, we conducted a field experiment in a shop-
ping mall corridor to investigate whether the robot could nav-
igate safely among pedestrians. The results revealed that our
method enables safer navigation without causing any possi-
bly unsafe abrupt movements in the surrounding pedestrians
during a 2-h trial.
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Appendix: Background Work: Collision Prediction Social
Force Model

Model Definition

Models of pedestrian collision-avoidance have been devel-
oped since the 50 s to deepen understanding of crowd dynam-
ics and design better facilities. The Social Force Model
(SFM) [45] is a popular pedestrian model that describes the
behavior of pedestrians in a crowd through reaction forces
inspired by physics. More than a single model, SFM may
be considered as a framework in which the acceleration of a
pedestrian i is given by

dvi (t)

dt
= v0

i − vi (t)

τ
+

∑

j �=i

fi, j (t). (1)

Here vi (t) is the pedestrian velocity at time t, v0
i is the pedes-

trian’s preferred velocity, a vector directed towards the cur-
rent pedestrian sub-goal and whose magnitude corresponds
to the velocity the pedestrian is more comfortable walking
at, while τ is the relaxation time to recover the preferred
velocity (0.66 s−1 in [13]). The actual avoidance behavior is
determined by the interaction term with the other pedestrians
j in the environment, fi, j , whose precise form determines
the SFM specification. The original Circular Specification
(CS) of the model was determined by symmetrical repulsive
forces as

fi, j (t) = Ae−di, j (t)/B di, j (t)

di, j (t)
, (2)
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Fig. 11 Collision prediction among pedestrians with CP-SFM. d ′
i j is

the distance between pedestrians at the time of maximum approach ti

where di, j is the distance between the pedestrians, A is the
maximum interaction intensity and B determines how the
intensity changes with d. The model is popular for its sim-
plicity, and it works well at the high densities that describe
the egress conditions it has been developed for [46], but it
fails in describing lower density regimes and for this rea-
son a few improved specifications, taking in account relative
velocities in the computation of fi, j , have been proposed
[47].

Zanlungo et al. [13] compare a few of these specifications
to the CP specification that they propose. This model, that
develops on ideas originating from Reynold’s boid model
[48], uses the relative velocity between the pedestrians to
compute how their “future” distance d ′

i, j will vary with time
according to the hypothesis that the pedestrians will keep
a constant velocity. The time at which the projected dis-
tance d ′

i, j assumes a minimum value is called the “inter-
action time” ti for pedestrian i and the value of the cor-
responding future distance d ′

i, j (ti ) (see Fig. 11) replaces
the current distance in the equation for the CS specifica-
tion force (2) in order to obtain the CP specification equa-
tion

fi, j (di, j , vi, j , vi ) = A
vi

ti
e−d ′

i, j /B
d ′

i, j (ti )

d ′
i, j (ti )

. (3)

Here the term vi/ti is introduced to modulate the force in such
a way that the pedestrian is able to stop in time ti . According
to the analysis of [13], the CP-SFM model outperforms the
previous SFM specifications in simulating pedestrian colli-
sion avoidance in low and average density multi-person set-
tings, a characteristics that makes this model suitable to robot
applications.

[49] compares the performance of CP to other popular
pedestrian methods for egress oriented applications.

Model Calibration

To calibrate and evaluate the CP-SFM model, [13] uses a set
of pedestrian trajectories obtained in a controlled experiment
to which eight subjects took part. Each subject was given a
start and goal point, and was prescribed to walk as naturally
as possible towards the goal. The trajectories of pedestrians
were tracked in a square area with an 8 meters side. The start
and goal points were decided in such a way that the trajecto-
ries of all pedestrians will converge, if walking straight to the
goal, at the center of the experimental area, creating a poten-
tially complex collision avoiding problem; but the density
of the environment was low enough to allow the pedestri-
ans to freely choose their avoidance strategy. The calibration
process used a genetic algorithm to minimize a fitness func-
tion that consisted in the average distance between the sim-
ulated and actual trajectories of pedestrians plus a penalty
term assigned to those trajectories that “collided” between
them (more exactly, trajectories that reached a minimum dis-
tance smaller than the distance between any pair of actual
pedestrians during the experiment). The genetic algorithm
used 500 genomes per generation, over 1,000 different gen-
erations; tournament selection over a pool of five solutions,
crossover and random Gaussian mutation with probability
0.1. The solution was determined through 50 independent
runs of the algorithm. The CP-SFM method outperformed
all the other specifications with an average position error of
30 ± 1 centimeters (55 ± 1 for CS-SFM).
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