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Potential for the dynamics of pedestrians in a socially interacting group
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We introduce a simple potential to describe the dynamics of the relative motion of two pedestrians socially
interacting in a walking group. We show that the proposed potential, based on basic empirical observations
and theoretical considerations, can qualitatively describe the statistical properties of pedestrian behavior. In
detail, we show that the two-dimensional probability distribution of the relative distance is determined by the
proposed potential through a Boltzmann distribution. After calibrating the parameters of the model on the
two-pedestrian group data, we apply the model to three-pedestrian groups, showing that it describes qualitatively
and quantitatively well their behavior. In particular, the model predicts that three-pedestrian groups walk in a
V-shaped formation and provides accurate values for the position of the three pedestrians. Furthermore, the
model correctly predicts the average walking velocity of three-person groups based on the velocity of two-person
ones. Possible extensions to larger groups, along with alternative explanations of the social dynamics that may
be implied by our model, are discussed at the end of the paper.
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I. INTRODUCTION

A. Motivation

The purpose of this work is to develop a dynamical
model for the relative motion of pedestrians in groups.
Social groups represent an important component of urban
crowds [1–3], reaching in some environments up to 85%
of the walking population [4]. Nevertheless, until recent
times almost all microscopic crowd dynamics models used
independent pedestrians as a basic unit, completely ignoring
the effects of the intergroup interaction. The presence of
groups definitely has a large impact on crowd dynamics,
influencing macroscopic behavior (density-velocity diagrams
and escape times) in both the medium- and high-density
regimes. In the past few years many works studied this problem
[5–10], bringing new insight to the simulation of realistic
pedestrian crowds. We nevertheless believe that the dynamics
of free-walking socially interacting groups (i.e., in the low-
density regime) has still not been deeply investigated. While
the field of proxemics [11,12] has been largely studied for
standing-still pedestrians, the analysis of the relative position
of unconstrained walking social groups [13,14] has been quite
limited, and a comprehensive dynamical model is still missing.
In this work we show that, at least in the low-density regime,
the very fact that pedestrians are socially interacting (and
thus arguably feel a very similar influence from the external
field, i.e., the environment) enables using statistical mechanics
methods to compare the observed pedestrian behavior with the
one predicted by the proposed potential. We thus think that this
work may also be an interesting contribution to the growing
field of statistical physics of social dynamics [15].

B. Physical models in pedestrian dynamics

The application of physical models to social sciences,
in particular using statistical physics methods, has a long
history and nowadays involves many fields, including opinion,
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cultural, and language dynamics [15]. A field in which physical
models have been widely used is the dynamics of pedestrians
crowds. The first models of the crowd used methods coming
from fluid dynamics [16], an approach that has been further
developed and is still in use [17]. Nevertheless, such an
approach does not allow us to describe the microscopic
behavior of individuals and to account for the diversity of
the pedestrians in the crowd. A possible way to account for a
microscopic dynamics is to use cellular automata [18–20],
while, by introducing a continuous space dynamics, it is
possible to use interaction forces and describe the pedestrians
as particles of a many-body mechanical system.

Indeed the social force model (SFM) [21] describes the
behavior of pedestrians through a system of second-order
differential equations, in which the particle accelerations
are given by forces accounting for the social and physical
interactions in the crowd. The model has been shown to repro-
duce qualitatively and quantitatively many aspects of crowd
behavior, in particular those connected to egress and panic
situations, which are of undeniable social interest [22–24]. Ini-
tially, the model tried to describe mainly physical interaction
and short-distance collision avoidance, using repulsive forces
depending only on the relative distance between pedestrians,
but then, to properly describe the collision avoidance of
pedestrians at various densities, specifications of the model
using forces based also on relative velocities have been
introduced [25,26]. Despite these successes, the connection
between the forces of the SFM and the actual microscopic
dynamics of pedestrians has not been deeply investigated or
demonstrated, and attempts at a rigorous analysis of the physics
implied by the equations are limited to unrealistic settings [27].
Some works have suggested that a force-based approach is too
simplistic to describe human collision avoidance and have
proposed methods based on local path planning [28,29].

The reason for this lack of testing between the dynamics
implied by the equations and the microscopic behavior of
real pedestrians originates obviously from the lack of reliable
data. Models can be calibrated on controlled experiments
[26,30,31] or on real-world data [32]. While the first approach
may be biased by the unnatural behavior of humans in these
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experiments, the second one is limited not only by increased
measurement noise but mainly by the lack of knowledge of the
pedestrians’ internal dynamics (their motivations).

When studying a walking socially interacting group in a
situation in which collision avoidance is negligible, we may
assume, given the similar motivations of the members of the
group, that the influence of the environment on them is almost
the same. The dynamics due to such an external field may then
be subtracted in the group center-of-mass frame. As we show,
this allows a direct comparison of the physics described by
the model and the actual pedestrian behavior (at least from a
statistical point of view).

C. Behavior of walking groups

1. Empirical observations

Social groups are defined in Ref. [33] as groups of people
who are engaged in a social relation to one or more pedestrians
and move together towards a common goal. The term relation
refers to oral communication possibly accompanied with
nonverbal elements such as body language, gestures, or
exchange of gaze [34]. In particular, eye contact is an essential
nonverbal factor that helps in estimating the reactions of
the partners and in anticipating their actions [35]. It is also
suggested that eye contact affects the equilibrium of physical
proximity [36].

The spatial relationship of socially interacting people, i.e.,
proxemics, has been largely studied, starting from the seminal
works of Refs. [11] and [12] in which the relative distance and
spatial distribution of people participating in social activities
are investigated, but most studies focused on people standing
still. References [5] and [13] are among the first studies to
report observations (based mainly on camera recordings) of
the behavior of walking groups. While Ref. [5] reports that the
spatial structure of a freely walking (i.e., not environmentally
constrained) n pedestrian group is a line of abreast-walking
pedestrians that tends to be bent into “V” or “U” formations
(i.e., the pedestrians on the wings walk ahead) when the crowd
density grows, Ref. [13] reports different spatial structures,
suggesting, for example, that the V configuration is the most
common one for three-person groups (regardless of crowding)
and that larger groups tend to split into smaller subgroups.
Nevertheless, Ref. [13] does not analyze the possible effects
of environmental constraints on the observed behaviors (the
width of the sidewalks pedestrians were observed in was
comparable to the group spatial sizes), and neither provides
a quantitative study of 2D space structures, nor follows groups
for a time interval long enough to analyze their change in
time. To automatically track pedestrians, Ref. [37] models the
distance between them as a Rice distribution with a maximum
around ≈0.7–0.8 m and a normal (von Mises) distribution of
angles around the abreast configuration.

In Ref. [14], whose empirical observations are largely
reported in this work, we use laser range finders along with
camera recordings to analyze the spatial and time stability
of social group formations. We study the empirical probability
distribution of pedestrian positions in the group center-of-mass
reference frame (after aligning the orientation of the frame
with the group velocity) and say that an n pedestrian group
has a stable (i.e., largely prevalent in time and over groups)

formation if the pedestrian position pdf presents exactly n clear
maxima. We find that two-pedestrian groups have a stable
abreast formation with a distance between the pedestrians
of ≈0.75 m, while three-pedestrian ones have a stable V
formation, with a central angle of ≈150◦, even when walking
unconstrained. For larger groups, we do not find any stable
overall configuration, unless we divide the groups into two- or
three-person subgroups, which are more stable in space and
time.

In a different environment (the German Protestant Church
Congress in Dresden), and with a different method (observa-
tion from top view cameras, for a relatively short time), Ref. [4]
finds for two- and three-pedestrian groups one-dimensional
(1D) and two-dimensional (2D) observable distributions very
similar to those of Ref. [14]. For four-pedestrian groups, they
find a U formation.

2. Models

While social groups represent an important component of
pedestrian crowds [1–3], their impact on crowd dynamics has
been largely overlooked in simulation models until recent
times. The authors of Ref. [5] extended the social force model
to describe the dynamics of such groups and their effect on the
crowd flow, proposing a dynamical model that describes an
abreast formation for freely walking pedestrians, a formation
that bends at higher densities.

In the last years other models to simulate the dynamics of
groups in a crowd have been proposed, focusing mainly on
the effect of the presence of groups on egress dynamics. The
authors of Ref. [6] introduce a rule model with two proxemics
distances, a minimum distance towards pedestrians outside the
group and a maximum one towards pedestrians in the group,
while Ref. [7] postulates attractive exponential bonds along the
relative position vector; but these two aforementioned works
do not pay attention to the group configuration. The authors of
Ref. [8] assume an abreast condition for freely walking groups
as part of their cellular automata model, as does Ref. [9], which
studies in continuous space the transition to V or “riverlike”
formations to avoid obstacles. The authors of Ref. [10] assume
that three-person groups may have collision-free V formations
to facilitate communication and describe them through a three-
person specific parameter.

Among these works, only Ref. [5] validates results compar-
ing to microscopic free walking configurations, and, according
to our knowledge, no previous work describes the group
dynamics introducing a 2D discomfort potential, providing
an analytical and numerical study of its consequences and
determining the structure and velocity of three-person groups
on the basis of two-person ones, as we do in the present work.

D. Plan of the paper

In Sec. II we propose a model for the dynamics of the
relative position of two pedestrians in a group. We conjecture
that the position of each pedestrian1 is determined by a
potential that represents the discomfort that the pedestrian

1The discomfort of each pedestrian is determined by a different
potential. See the discussion in Sec. II C.
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FIG. 1. (Color online) rij and ĝ for a two-pedestrian system. r

and θ give the position of pedestrian 1 with respect to 2 in the ĝ
oriented frame. |θ | is the angle that 2’s gaze has to span between the
goal and 1. The corresponding angle for 1 is given by |ψ |. In the
figure, θ > 0 and ψ < 0.

feels when interacting at a given position. We assume that
the pedestrian accelerations are determined by the negative
gradient of the potential, i.e., that the motion of the pedestrians
is aimed to maximize their comfort. The main properties of
the resulting equations for the motion of the pedestrians are
then analyzed.

In Sec. III we describe our data collection method and the
quantitative results of our observations relating the probability
distribution for the positions of pedestrians in a group and
group velocities. In Sec. IV we compare the observed 2D
probability distribution of the relative position of pedestrians
in a two-person group with the Boltzmann distribution deter-
mined by the proposed potential and use this comparison to
calibrate the model’s parameter.

In Sec. V we develop a simulator for the two-person system
and compare its results to the empirical ones of Sec. III and to
the analytical ones of Sec. IV. In Sec. VI we study three-person
groups assuming first-neighbor interaction. We first derive
some analytical results for the equilibrium configuration and
then use our simulator to analyze the behavior that the model
predicts for these groups and compare the results to empirical
observations. We also provide a simultaneous calibration of
the model on two- and three-pedestrian group data and discuss
addition of second-neighbor terms to improve the model’s
capability of reproducing empirical data.

In Sec. VII we discuss the extension to larger groups,
and in Sec. VIII we analyze possible different interpretations
of the behavior described by our equations and discuss the
achievements and limitations of our work.

II. TWO-PEDESTRIAN MODEL

A. Description of the model

We derive the discomfort potential for pedestrians involved
in a social interaction, as a function of the angle θ between
the relative distance vector r and the common goal direction
and of the distance r (see Fig. 1). θ is related to the angle
that the pedestrian’s gaze has to span to focus on the walking
direction and on the partner position. We assume that r and θ

independently determine the pedestrian discomfort, each one

with a different weight, Cr and Cθ . These two parameters,
along with the preferred distance for social interaction, r0,
determine the probability distribution of the relative position in
a two-pedestrian group. A fourth parameter, η, is related to the
tendency of pedestrians to walk ahead or behind their partner.
We show that η does not affect the probability distribution
of relative position in two-pedestrian groups but modifies
the group velocity. In particular, η < 0 causes pedestrians
in groups to walk slower. The presence of the parameter
η allows us to derive the velocity and the configuration of
three-person groups from the two-person ones and if η < 0 the
three pedestrians walk in a V formation with the central one on
the rear (three-person group results are derived in Sec. VI). In
Sec. VIII we discuss how η < 0 can be interpreted as a way to
express in a mathematical form the “cognitive load” of social
interaction that causes pedestrians to walk slower.

B. Definitions and assumptions

Let us consider n pedestrians with positions ri and veloc-
ities vi in an environment reference frame,2 walking towards
a common goal, whose direction is given by a unit versor ĝ.
We define the preferred velocity vector of the pedestrians as
vp = vpĝ.3

According to the SFM framework, the differential equation
for the motion of pedestrian i is

v̇i = Fg

i +
∑

j∈n,j �=i

Fij + Fc
i + Fe

i + ξ i . (1)

Here

Fg

i = (vp − vi)

τ
(2)

is a drag force towards the goal,4 Fij is the interaction force
with the group partner j , while Fc

i stands for the force
determined by collision avoidance towards pedestrians outside
the group and other obstacles. Fe

i gives all the other interactions
with the environment and ξ i is a white noise term representing
the pedestrian’s internal dynamics.5

We define the center-of-mass position and velocity as

X =
∑n

i=1 ri

n
, V =

∑n
i=1 vi

n
, (3)

and name the positions and velocities in the center-of-mass
system rc.m.

i , vc.m.
i . We assume that Fe

i may be written as drag
force as in Eq. (2) and determines basically a redefinition
of the pedestrian (sub-)goals, which may be time dependent
(determined by the navigation path towards the final goal,

2An arbitrarily oriented frame in which walls and similar architec-
tural elements have zero velocity.

3ĝ and vp are considered equal for all group members.
4τ is the time scale to recover the preferred velocity, whose value is

≈0.66 s according to Ref. [26].
5As shown by Eq. (1), the term force has to be intended purely with

the meaning of “behavioral interaction,” i.e., we consider situations
in which the actual physical interactions are absent or negligible, and
all masses are equal to 1 and dimensionless. Forces have thus the
dimensionality of accelerations.
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influenced by diverse environment features [38–41]) but
are assumed equal for socially interacting pedestrians. The
collision term is pedestrian dependent, but we assume that at
low pedestrian densities (ρ � 1 pedestrian per square meter),
and when studied over a long-enough time scale, it can be
approximated as a white-noise term.

Based on these considerations, from a statistical point of
view, i.e., if the consequences of such a dynamics are studied
over long-enough times, the dynamics of the pedestrian is
given by

v̇i = ṽp − V
τ

− vc.m.
i

τ
+

∑
j∈n, j �=i

Fij + �i , (4)

where ṽp includes the redefinition of the (sub-)goal and
the white noise term �i

6 accounts for ξ i and for collision
avoidance.

Let us now consider a two-pedestrian system and the
dynamics of its relative variables

r = r1 − r2, v = v1 − v2, (5)

defining

f = F12 − F21, (6)

we obtain

v̇ = − v
τ

+ f + �. (7)

If we assume that f may be derived from a potential U and that
the effect of the purely dissipative term −v/τ combined with
the white noise � = �1 − �2 may be treated as a thermal
bath, then the statistical properties of r are determined by the
potential U (see Appendix A for the definition of statistical
observables).

C. Non-Newtonian terms

In deriving Eq. (7) we restricted ourselves to the reference
frame comoving with the center of mass of the system. The
reason for doing that is mainly operative, since, as we will see
in Sec. III, all our observables are defined in such a frame, with
the obvious exception of the group velocity, i.e., the velocity
of the center of mass, that is defined in the environment frame.
Nevertheless, an important distinction between the nature of
the force Fij of Eq. (1) and the usual internal forces of a
physical system has to be stressed. In Newtonian mechanics,
when the interaction between particles is described by an
action-at-distance force, the closed system is considered as
translation invariant, i.e., the corresponding potential assumes
the form U (ri − rj ), from which Newton’s third law of
dynamics, Fij = −Fji , and momentum conservation may be
derived. In such a case, in Eq. (6) we have f = 2F12 and the
relative force is obviously obtained by same the potential U

that determines the internal forces.
When describing pedestrian interaction using a system

of forces, the action-reaction principle may not apply. A
classical example is the problem of vision, which creates an

6Assumed to be normally distributed.

TABLE I. Number of pedestrian groups N for different group
size n, along with average velocity 〈v〉, standard deviation σv , and
standard error σ e

v (in mm/s), and overall trajectory point number S.
Only data points in which all pedestrians have velocities larger than
0.5 m/s were used.

n = 1 n = 2 n = 3 n = 4

N 9495 854 102 13
〈v〉 1336 1159 1112 1074
σv 197 173 165 138
σ e

v 2 6 16 40
S 712052 70513 8721 893

asymmetry between the interacting pedestrians.7 For example,
Ref. [27] studied the effect of a sharp cone of vision in a
classical repulsive interaction potential [collision avoidance
only towards the particles (pedestrians) that fall in the cone],
while in Ref. [5] the aligning potential acts only on the
pedestrians that are ahead of the group, i.e., that have the
center of mass of the group out of their vision field. Similar
non-Newtonian forces generate an acceleration of the center
of mass (with respect to the environment frame in which the
forces are defined) due to internal forces. Such an acceleration
may operate on Eq. (2) and lead to different velocities
for pedestrian groups with respect to single pedestrians (as
empirically observed and reported in Table I).

Since we want our model to be able to describe such
non-Newtonian terms, we cannot use a single potential in the
form U (ri − rj ) to describe the two-pedestrian system in the
environment frame. As we show below, the problem may be
solved by using a different potential, or discomfort function
(the meaning of the term discomfort will be explained below),
to describe the dynamics of each pedestrian. The acceleration
due to interaction with group members will be given for each
pedestrian by the negative gradient of the discomfort function

Di =
∑
j �=i

Dij (ri − rj ), (8)

where Dij is the potential determining the motion of i given the
relative distance from j . We will assume the discomfort of j

with respect to i to be given by a function Dji that has the same
dependence on the variable r, i.e., Dij (r) = Dji(r) ≡ D(r),8

but we will allow D not to be invariant under inversion, i.e., in
principle, D(r) �= D(−r). As a consequence, at a given time
t , we may have

Dij (ri(t) − rj (t)) �= Dji(rj (t) − ri(t)), (9)

so the dynamics of the each pedestrian is determined by a
different potential and is non-Newtonian.

7Obviously also non-Newtonian terms not related to vision may be
introduced; for example, the non-Newtonian term in our model is
only implicitly related to vision, since we introduced it on the basis
of a “comfort of interaction” principle.

8This means that we are considering all pedestrians as equal and
indistinguishable.
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It is easily verified that in a frame comoving with the center
of mass, the dynamics of the system is given by

v̇ = f = −∇(D(r) + D(−r)) ≡ −2∇U (r). (10)

The potential U is now manifestly invariant under inversion, so
in the noninertial center-of-mass frame the overall momentum
is conserved and the potential U may be used to study the
statistical properties of the system. As we see below, the
non-Newtonian terms have observable effects on the group
velocities (and on the three-pedestrian group configuration),
resulting in good agreement with empirical observations.

D. Derivation of the potential

Let us assume that the interaction force, acting on pedestrian
i as an effect of the presence of j , may be derived by a function
Dij (ri − rj ) according to

Fij = −∇iDij (ri − rj ), (11)

where ∇i stands for derivation with respect to ri . Analogously,
the force on pedestrian j is given by Fji = −∇jDji(rj − ri).
As discussed above, we assume the form of the two poten-
tials to be the same, Dij (r) = Dji(r), but since we allow
D(r) �= D(−r), we do not drop the subscripts to recall that the
motion of each pedestrian is determined by the minimization
of a different function.

The force Fij represents an act (acceleration) that pedestrian
i performs as a result of his or her relative position with
respect to j . Since such an action is directed to minimize
the function Dij , and assuming that the spatial interaction
towards the partner is aimed to reach the most comfortable
configuration for social interaction, we may name the function
Dij as the discomfort function or discomfort potential9 of i

due to its location with respect to j , i.e., as a mathematical
way to represent that the pedestrian is not located in an
optimal location for social interaction and will perform an
act (acceleration) to proceed towards a better location. The
minima of Dij will thus represent relative locations in which
i attains maximum comfort for social interaction with j .10

For walking and interacting pedestrians we expect Dij

to depend on the relative position rij ≡ ri − rj and on the
versor ĝ, and we seek an expression in the form D(r,θ ), where
r = |rij | and θ is the angle between rij and ĝ (see Fig. 1).

1. Angular dependence

We define θ to assume values in (−π,π ], so also

ψ ≡
{
θ − π if θ > 0,

θ + π if θ � 0,
(12)

9The term function recalls the difference with the usual meaning
of potential in physics, i.e., that each pedestrian in the system is
described by a different potential. Nevertheless, since from any other
point of view such a function is equivalent to a physical potential, we
will use the two terms as interchangeable.

10D will be simply called discomfort function, but a more
precise term would be social interaction discomfort function since
pedestrians are in general trying to minimize also social interaction
unrelated terms [42].

assumes values in the same range. If |ψ | gives the angle
between the direction to the goal and the direction to pedestrian
j from i’s point of view, |θ | is the corresponding angle for j

(Fig. 1). The walking pedestrians need to have the direction to
the goal ĝ in their field of view, but for social interaction [34]
they also need to have the position of their partner reachable
to their gaze. The discomfort is then a growing function of
the angle |ψ | that their gaze has to span. At the same time,
pedestrians want to meet their partner’s gaze [35], so the
pedestrian’s discomfort is also a growing function of the angle
the partner’s gaze has to span, |θ |. The simplest form that
satisfies symmetry under the parity operation θ → −θ is11

	η(θ ) = (1 + η)θ2 + (1 − η)ψ2, (13)

with −1 � η � 1.
The potential 	η assumes minima in ±(1 − η)π/2 and is

continuous for all θ but has cuspidal local maxima in 0 and
π (excluding the case η = ±1 for which one of these points
turns into a smooth global minimum). While the potential
is symmetric under θ → −θ , when η �= 0 it is not symmetric
under θ → θ + π (i.e., under θ → ψ), and thus the discomfort
function is not symmetrical under inversion, D(r) �= D(−r).
As discussed above, this implies that for η �= 0 the force is
non-Newtonian and the system’s center of mass is accelerated
in the environment frame as a result of the sum of internal
forces not obeying the third principle of dynamics. As we
show in Sec. II F, when η > 0 the effect of this non-Newtonian
term corresponds to an acceleration towards the direction of
the goal, causing a higher velocity for two-person groups
with respect to individuals, while a negative η leads to an
acceleration opposite to ĝ, causing groups to move slower
than individuals.

Even though our model does not explicitly define a vision
field, from the position of the minima we understand that
η may be related to this concept. In particular, when η < 0
pedestrians give a higher discomfort weight to ψ2 than to
θ2, i.e., they prefer to have the partner in their vision field
rather than being in the partner’s field, and, as a result, their
discomfort function D assumes a minimum with |θ | > π/2.
On the contrary, if η > 0, pedestrians try to locate themselves
in the partner’s field of view (they act as “leaders”) and their
discomfort is minimized with |θ | < π/2. If we assume the
discomfort of each pedestrian to be given by the same function,
Dij (r) = Dji(r),12 then η assumes the same value for both
partners, and the two pedestrians may be at the same time in
their position of minimum discomfort only if η = 0. It is this
“frustration” that causes the accelerating non-Newtonian term
for η �= 0.

11We stress that such a symmetry is not necessarily true for crowd
dynamics [43]. Nevertheless, we assume it to be valid for the
angular dependence of the discomfort potential of socially interacting
pedestrians.

12This assumption, at least for pedestrians who are socially
interacting, is justified by our observations of Sec. III that do not
clearly show the presence of “leaders” and “followers.”
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2. Radial dependence

The radial potential has to attain a minimum at the distance
that is most comfortable for social interaction, r0. For r > r0

the potential will be attractive, accounting for the discomfort
due to interacting at too-large a distance, while for r < r0

it will be repulsive, accounting for the discomfort of being
too close and for the physical constraints.13 We may assume
that when two standing-still pedestrians are far away (r � r0)
they start walking straight towards each other, with no regard
to θ . Furthermore, this behavior should be almost distance
independent for large distances (we do not want the force to
diverge or fade out for r → ∞14) so

F(r) ∝ −er for r � r0, (14)

where er is the radial versor. Furthermore, we want the
repulsive term to be divergent for r → 0 to avoid body
overlapping; for simplicity and relevance to classical physics
we set

D(r) ∼ 1

r
for r � r0. (15)

A simple form satisfying Eqs. (14) and (15) is

R(r) = r

r0
+ r0

r
. (16)

3. Full discomfort function

Assuming independence between θ and r (Appendix B), a
simple form for D satisfying Eq. (14) ∀θ is

D
η

ij (r,θ ) = CrR(r) + Cθ	
η(θ ). (17)

The subscript ij recalls us that the definition of θ depends on
the orientation of rij (Fig. 1) and that the discomfort of the two
pedestrians is described by two different potentials if η �= 0.

E. Interaction force

From Eqs. (11) and (17), and assuming θ > 0, we may
derive the force felt by a pedestrian i with relative position
rij with respect to a socially interacting partner j in an
environment frame whose y axis is aligned with ĝ, as

Fη
x = Cr

r0

(
r2

0

r2
− 1

)
sin θ − 4

r
Cθ (θ − θ+) cos θ, (18)

Fη
y = Cr

r0

(
r2

0

r2
− 1

)
cos θ + 4

r
Cθ (θ − θ+) sin θ, (19)

13This repulsive term describes intergroup collision avoidance; in
Ref. [26] we show that effective description of pedestrian avoidance
needs to take into account relative velocity, but as long as the system is
close to equilibrium v � V , and from the statistical point of view of
Eq. (A2) a dependence only on r is sufficient for intergroup dynamics.

14Most probably pedestrians located at very large distances are
not socially interacting, and their interaction force is weaker (a
similar argument can be made for strongly nonabreast configurations).
Nevertheless, in this work we develop the discomfort potential,
assuming that pedestrians are always socially interacting, and extend
it to any r and θ value. As a result, our method underestimates the
probability of finding pedestrians very far from equilibrium, even
when it describes very well the behavior around equilibrium (see, for
example, Fig. 5).

where θ+ is the angle in which 	η assumes the minimum

θ+ = (1 − η)
π

2
. (20)

In the θ � 0 case we have to replace θ+ with

θ− = −(1 − η)
π

2
. (21)

F. Center of mass and relative acceleration

Let us define

ϕ ≡ θ+ − π

2
= −η

π

2
= −

(
θ− + π

2

)
. (22)

By substitution in Eqs. (18) and (19), we find that the
acceleration V̇ ≡ (Fη

ij + Fη

ji)/2 of the center of mass with
respect to environment frame, due to non-Newtonian internal
force terms, results in

V̇x = 4

r
Cθϕ cos θ, (23)

V̇y = −4

r
Cθϕ sin θ, (24)

where 0 < θ � π is the angle giving the position of the
pedestrian on the right (i.e., with x � 0) in the comoving frame
with origin in X and y axis aligned to ĝ. The presence of an
η �= 0 term causes thus an acceleration for the pedestrian group
center of mass with magnitude |aη(r)|, where

aη(r) = 4

r
Cθϕ. (25)

The sign of V̇y is always opposite to the sign of ϕ, so for η > 0
the non-Newtonian term accelerates the pedestrian group in
the direction of the goal, while for η < 0 it decelerates it.

The relative acceleration is given by v̇ ≡ Fη

ij − Fη

ji and
results in

v̇x = 2Cr

r0

(
r2

0

r2
− 1

)
sin θ − 8

r
Cθ

(
θ − π

2

)
cos θ, (26)

v̇y = 2Cr

r0

(
r2

0

r2
− 1

)
cos θ + 8

r
Cθ

(
θ − π

2

)
sin θ, (27)

Equations (26) and (27) are η independent and satisfy
f ≡ Fη

ij − Fη

ji = 2F0
ij , where F0 is the force obtained by

derivation of the potential D0(r). This potential is invariant
under inversion and thus satisfies D0

ij = D0
ji . We thus obtain

that, as required in Sec. II B, the relative dynamics of the
system is described by a single potential,

U (ri − rj ) ≡ D0(ri − rj ). (28)

The relative dynamics is thus described by Eqs. (7), (26), and
(27), it is decoupled from the center-of-mass dynamics, and
its statistical properties are given by the potential U .
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The dynamics of the center of mass, on the contrary,
depends on the relative dynamics. Since the potential U

is symmetrical under θ → π − θ , we see from Eq. (23)
that at statistical equilibrium V x = 0.15 Regarding Vy , for a
“low-temperature” system, we may assume the relative system
to be close to the minimum of U , i.e., to have r ≈ (r0, ± π/2).
For such a configuration, the acceleration given by Eq. (25)
is directed along y (i.e., along the goal direction ĝ), causing a
higher preferred velocity for η > 0 and a lower one for η < 0.
The total acceleration for the two-pedestrian group center of
mass will be given by the sum of the terms of Eqs. (2) and (25).
Since vp is by definition equal to the velocity of pedestrians
outside groups v(1), the velocity of pedestrians in groups of two
is (at least for a zero-temperature equilibrium configuration)

v(2) = v(1) − aη(r0)τ. (29)

As we show in Table I, empirical data suggest v(1) > v(2)

and thus η < 0. In Appendix C we show how to improve
the estimate of Eq. (29) by taking thermal effects into account.

G. Model parameters

The parameters Cr and Cθ have the dimension of the square
of a velocity. For r � r0 we have

F(r) = −Cr

r0
er . (30)

From this equation we may get the order of magnitude of
Cr . We may expect the value for the acceleration towards the
partner when at a large distance to be roughly equivalent to
the maximum acceleration towards the goal.16 Using Eq. (2),
the value of τ reported in Ref. [26] and the velocity of single
pedestrians in Table I, we have a maximum acceleration ≈
amax = 2m/s2, so we may guess

Cr = r0 amax. (31)

The data regarding the statistical behavior of two-pedestrian
groups are not sufficient to calibrate all the values of the model
parameters,17 unless we use Eq. (31), as we do in Sec. IV. On
the opposite, in Sec. VI E we calibrate all parameters based
on the two- and three-person group data, without relying on
Eq. (31).

We may estimate the contribution of the radial and angular
part of U by computing its (adimensional) second derivatives
in the minimum

∂2U

∂2θ

∣∣∣∣
θ=± π

2

= 4Cθ ;
∂2U

∂2
(

r
r0

)
∣∣∣∣∣
r=r0

= 2Cr. (32)

The two terms are equivalent for

C̃θ = Cr

2
. (33)

15This can be verified explicitly by replacing sin θ with cos θ in
Eq. (C1).

16By maximum acceleration we mean the acceleration felt by a
single pedestrian with v = 0 in the environment frame.

17Since the observable effects are determined by the three equations
(26), (27), and (29).

FIG. 2. (Color online) Two-dimensional dependence of the dis-
comfort potential U for different values of the ratio Cr/Cθ in a square
area of size 4r0 (high values in black and low values in white). From
left to right, Cθ = C̃θ /5, Cθ = C̃θ , and Cθ = 5C̃θ [see Eq. (33)].

Figure 2 shows the qualitative behavior of the potential U for
values Cθ = C̃θ/5, Cθ = C̃θ , and Cθ = 5C̃θ .

III. EMPIRICAL OBSERVATIONS

A. Data collection

We tracked pedestrian motion in two different areas of a
pedestrian underground facility in Umeda, Osaka (Japan), for
6 h in each area. The pedestrian areas consisted of a few
corridors connecting a railway station to a shopping mall, each
area being around 500 m2. The environments are described
in detail in Ref. [44], and the pedestrian tracking data are
available at Ref. [45]. The average pedestrian density in the
environment resulted in ≈0.03 pedestrians per square meter
while the width of the corridors varied between 4 and 7 m,
meaning that the average distance from a pedestrian to another
pedestrian outside their group, or to a wall, is expected to be
larger than the spatial size of the group.18 We thus assume
that collision avoidance is not a dominant behavior in this
environment.

The pedestrian positions were determined at time intervals
of ≈50 ms using a laser range-finder tracking system that has a
precision of ≈50 mm [46]. We smoothed the tracked positions
on time windows of 500 ms to further improve the precision
and to reduce the effect of gait in position measurement.19

Pedestrian velocity is computed as the ratio of the displacement
vector between two (smoothed) consecutive tracking positions
and the time window.

We also video recorded each experimental area using two
different “frontal view” cameras (Fig. 3) to observe the social

18We may introduce the following “rule of thumb” to define the
range of density up to which the group structure may be considered
as not perturbed by collision avoiding beyond the conditions of
Eq. (4): assuming r0 ≈ 0.75 m to be the average distance between
two interacting pedestrians, we ask the size of the environment to
be larger than nr0, and the density smaller than (nr0)−2, in order to
consider an n pedestrian group to be “free walking” in the meaning
of Eq. (4). It is nevertheless very difficult to state in a rigorous way
what is the value of pedestrian densities at which the approximations
leading to Eq. (4) are valid, and thus it will be important in future
to compare the results of this paper with the behavior of pedestrian
groups in natural environments at even lower densities, when such
data will be available.

19The time length of a pedestrian stride is roughly 0.5 s [47].
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FIG. 3. (Color online) Camera view of the experimental area.

interaction between the pedestrians for a sufficiently long
time (pedestrians are usually tracked and observed for tens of
seconds). This front-view camera-based observation of social
interaction was possible because the cameras are not needed
for tracking and the density was relatively low (otherwise
top-view cameras would have been necessary).

Two coders (nontechnical staff members of our laboratory)
were asked to identify all the social groups in the environment
and their members. In order to do that, they were asked to
use all the information available from the videos, such as
relative position, coherent motion, and social clues, including
conversation, gaze exchange, and age, sex, and clothing.
Furthermore, the coders were asked to annotate the groups,
and the individuals in each group, for which they could
identify explicit social interaction clues (namely conversation,
or explicit gaze exchange). For an evaluation of the agreement
between coders, see Appendix D.

B. Results

We are interested in fully connected socially interacting
groups, i.e., groups in which, from the point of view of social
interaction, no disconnected subgroup was present. For the
scope of this paper we use groups of size n = 2, n = 3, and n =
4, and we use only social groups for which both coders agreed
on the size of the group and on all the members of the group
being involved in social interaction. In this way, we should be
able to avoid false positives, i.e., groups that were coded as
interacting but actually were not.20 In contrast, we could have
some false negatives, but this is not a problem provided that
the number of fully interacting groups coded by both coders is
high enough for a significant statistical analysis. Table I reports
the number of fully interacting groups for each size, along
with the number of trajectory points, and the average, standard
deviation and standard error of their velocity distributions.21

20Pedestrians were labeled as interacting or not interacting, without
labeling the time at which the interaction happened. Interacting
groups may have been noninteracting for some time, with effects
on empirical distributions, in particular regarding the tails.

21These values are obtained computing, first, the average velocity
for each group and then computing the mean, standard deviation,
and error on the average velocity distributions. If we just compute
averages and standard deviations on the overall velocity distribution
of all pedestrians at all times, slower groups have a larger impact by
being longer in the tracking area, and the corresponding results are

FIG. 4. (Color online) Empirical pdfs in the center-of-mass
frame, for two- (a) and three- (b) pedestrian groups. High-probability
cells in black and low-probability cells in white. The same data are
shown in Figs. 5 and 10 along with a quantitative color bar.

We are interested in the behavior of interacting and walking
pedestrians, and for this reason we do not consider data points
in which one of the members of the group has a velocity
slower than 0.5 m/s.22 For each group we ideally would like
to compute the positions in the reference frame comoving
with the center of mass and with the y axis aligned to the
goal. However, since the goal information is not available, we
assume that the group velocity is aligned to the goal direction,

V/V ≈ ĝ, (34)

which is reasonable unless the system is very far from
equilibrium. Finally, we measure the empirical probability
distribution for pedestrians in the group center-of-mass frame,
by dividing the space in regular cells of linear dimension
0.05 m and averaging occupancy over all groups and times.
Figure 4 shows a logarithmic plot of the pedestrian distribution
for two-pedestrian and three-pedestrian groups, in square areas
of linear size 2.5 m centered around the center of mass.
We can see a qualitative agreement between the shape of
the isopotential curves of Fig. 2(a) (low Cθ value) and the
isoprobability curves of Fig. 4(a), with the potential minima
corresponding to the probability maxima. These probability
distributions are qualitatively similar to those of Ref. [4],
suggesting a cross-cultural value.

IV. MODEL CALIBRATION

A. Boltzmann distribution calibration

According to the ergodic principle,23 and following the
results of Eqs. (7), (26), and (27), the probability24 of finding

1310 ± 240 mm/s for n = 1, 1137 ± 209 for n = 2, 1099 ± 192 for
n = 3, and 1059 ± 187 for n = 4.

22We chose this threshold considering the velocity distributions
(see Table I). The validity of the threshold is given by the fact that,
after removing the velocities under the threshold, we obtain a normal
distribution whose average is a few standard deviations higher than
the threshold itself. For a detailed discussion, see Ref. [44].

23Provided that the sum and the integrals of Eq. (A2) are performed
over large-enough values of N and Tk .

24In this work, when dealing with 2D probability distributions, we
divide the 2D space in uniform cells and normalize ρ according to
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TABLE II. Model parameters obtained calibrating only on two-
pedestrian data [Eq. (37)] and on two- and three-pedestrian data
[Eq. (47)]. r0 in m, Cr and Cθ in m2/s2, σ in m/s2, ϕ in degrees.

r0 Cr Cθ η σ

Eq. (37) 0.752 1.5 0.16 −0.23 (ϕ = 20) 1.09
Eq. (47) 0.745 0.62 0.08 −0.43 (ϕ = 39) 0.77

the pedestrian in a cell of sufficiently small area centered in
rc.m. = (xi,yj ) is given, for a two-pedestrian group, by

ρB(xi,yj ) = e
− U (2xi ,2yj )

T�

∑
k,l∈cells e

− U (2xk ,2yl )
T�

, (35)

where the “temperature” T� is determined by the equilibrium
between the −v/τ and � terms in Eq. (7).25

While keeping Cr/r0 = 2 m/s2 [Eq. (31)], we may calibrate
r0, Cr/Cθ , and T� in order to minimize the difference between
the probability distribution given by the model through
Eq. (35), ρB , and the one empirically observed, ρE . We thus
searched, using a genetic algorithm, for the values of the
parameters that minimize

εB =
∑

i,j∈cells

(ρB(xi,yj ) − ρE(xi,yj ))2

ρE(xi,yj )
, (36)

i.e., the relative error weighted by the number of observations
per cell.26

B. Parameters value

The optimal values resulted to be r0 = 0.752 m,
Cθ = 0.157 m2/s2 [≈C̃θ/5, refer to Eq. (33)] and
T� = 0.053 m2/s2 (see also Table II for parameter values).
As already suggested by the qualitative similarity between
Figs. 2(a) and 4(a), the contribution of the angular term to the
discomfort seems to be smaller than the radial one.

Figure 5 compares the logarithmic 2D plots for the observed
[Fig. 5(a)] and modeled [Fig. 5(b)] probability distributions.
The model has a tendency to underestimate the probabilities far

∑
i∈cells ρi = 1, and thus ρ is dimensionally a probability. The same

convention is used when we show 1D “slices” of the 2D distributions,
as in Figs. 6 and 12. On the contrary, when showing actual 1D
probability distribution functions, as in Figs. 7, 11, and 13, we use
the normalization condition

∫
ρ(z)dz = 1.

25Equation (35) may be obtained by writing
ρB (ri ,rj ) = Cexp( − U (ri − rj )/T�) δ(ri − rj ), integrating over
rj , and considering that the overall probability distribution is the
normalized sum of the two identical i and j distributions.

26Since ρ is a probability, εB is a pure number. The error function
is obtained by computing, for each cell, the square of the ratio of
the difference between empirical and modeled probabilities over
the empirical probability, �ρ2/ρ2

E , and then multiplying it by
the probability of observing the system in such a cell, ρE . The
denominator is thus ρE and high-probability points (maxima) are
given a higher weight with respect to a straightforward relative error
computation.

FIG. 5. (Color online) (a) Empirical pdf ρE in a square area of
linear size 1.5 m centered on the center of mass. (b) ρB in the same
area. The graph shows the probability of observing a pedestrian in
each cell, according to the logarithmic color bar. Probabilities below
ρmin = 3.6 × 10−5 are fixed to ρmin.

from equilibrium27 but describes properly the 2D distribution
around the maxima. Figure 6(a) shows the y dependence of
ρE and ρB for different values of x, while Fig. 6(b) shows the
x dependence of ρE and ρB for different values of y.

C. Estimate of η

Using Eqs. (25) and (29), and Table I to know the difference
between the velocity of an independent pedestrian, v(1), and a
pedestrian in a group of 2, v(2), and the value τ = 0.66 s from
Ref. [26], we get ϕ ≈ 0.32 rad (18.5◦) or η ≈ −0.2. This value
assumes that the pedestrians are always at the equilibrium
position, which is only an approximation for � �= 0. In the next
section, we rely on numerical integration to obtain the value of
ϕ for a system with noise (i.e., with nonzero temperature). See
also the discussion in Appendix C for an analytical estimate
of the thermal effects on pedestrian velocity.

V. NUMERICAL INTEGRATION

For practical applications we need a numerical integrator
of Eq. (4) [i.e., a simulator of the pedestrian group behavior;
in this work the terms numerical integration of Eq. (4) and
simulation of the pedestrian system are to be considered
equivalent]. In order to do that we need an estimate of
the noise term �, and we need to check that, using this
appropriate noise value, the statistical behavior of the system is
equivalent to the empirical one and to the theoretical result of
Eq. (35).

In this section we use a first-order Euler integrator (see
Appendix E) with time step �t = 0.1 s28 and assume that �x

27The description is good up to a few standard deviations, so
differences are visible only in log scale.

28This is a rough integrator from the computational physics point
of view, but it is standard in pedestrian crowd simulations, so it
is important to verify that such an integrator may reproduce the
analytical results. It is also arguable that a first-order integration
with a time step of order �t is a more realistic way to realize
the pedestrians’ decision process than a refined integrator (as, for
example, a Runge-Kutta 4) with a shorter step, even if the latter
provides results closer to the continuous ones.
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FIG. 6. (Color online) (a) y dependence of ρE compared to the
y dependence of ρB for different values of x. (b) x dependence of
ρE compared to the x dependence of ρB for different values of y. To
facilitate the distinction, in both figures, ρB is shown as a continuous
function rather than a histogram.

and �y are given by two identical normal distributions with
standard deviation σ . Keeping the values of parameters Cr ,
Cθ , and r0 fixed as calibrated in the previous section, we use a
bisection method on the error function

εS =
∑

i,j∈cells

(ρS(xi,yj ) − ρE(xi,yj ))2

ρE(xi,yj )
(37)

to find the value of σ that reproduces the empirical values.29

Here ρS is the simulated probability distribution for the
position of the pedestrian in the reference system comoving
with X and with the y axis aligned to V,30 integrated
numerically over a time interval T long enough in order not to
have a T dependence in the results.31

We find that the similarity between ρS and ρE is maximized
by adding a white-noise therm with σ ≈ 1.09 m/s2 to each
step of the numerical integration.32 We are going to use this
value of σ in the following numerical integrations of the
system.

The average velocity of the numerically integrated two-
pedestrian group resulted in 1.178 m/s, as predicted slightly
higher than the analytical result (29) (which is valid for a
noiseless system). We used a bisection optimization to find
the value of η that gives a velocity of 1.160 ± 0.146 m/s; the
result is η = −0.23 (ϕ = 0.36 radians or ≈20.5◦). We discuss
the effects of noise on group velocity in Appendix C.

To verify that the results of our numerical integrator are
basically equivalent to those of the previous section, and thus

29The calibration of all parameters could have been performed using
a multidimensional optimization algorithm on Eq. (37), as we do for
Eq. (47) in Sec. VI. Nevertheless, calibration on (35) does not rely on
numerical integration and is thus less computationally expensive.

30In this way, the computation of the simulation density distribution,
ρS , is completely equivalent to the experimental one of ρE , while for
ρB we used the reference frame aligned with vp .

31This is basically a numerical realization of Eq. (A1). We verified
that the results were equivalent for T = 105 and T = 106 s and used
the latter value in all the following results.

32Since we did not deal with the problem of numerically implement-
ing Eq. (4) for different �t time steps, the validity of the proposed
σ values has been tested only for the proposed Euler method and
�t = 0.1 s.
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FIG. 7. (Color online) (a) Comparison between rc.m. distribu-
tions in a two-pedestrian group. Solid black: Empirical distribution.
Solid orange (light gray): Numerically integrated system. Dashed
blue (dark gray): analytical result of Eq. (35) (shown as a continuous
function). (b) Same comparison for θ .

a good approximation of the empirical ones, Fig. 7 shows a
comparison among the empirical, analytical, and simulated r

and θ probability distributions.

VI. THREE PEOPLE

A. First-neighbor interaction

According to Ref. [5], unconstrained n pedestrian groups
walk in an abreast configuration, keeping a distance between
each first neighbor, almost equivalently to the two-pedestrian
group distance. References [4,13,14] suggest bent formations
for such groups, and Ref. [14] suggests that large groups are
not stable. Still, even the presence of metastable structures
with pedestrians located at distances of ≈(n − 1)r0 is not
in agreement with a straightforward application of Eq. (1)
with interaction forces given by Eqs. (18) and (19) and j

running over all j �= i. Even for the three pedestrian groups
that we observed, as shown in Table III, the central angle
in the V formation is close to π , and the distance between
the pedestrians on the wings is just slightly smaller than 2r0,

TABLE III. Average values and standard deviations of the
main observables obtained using parameters calibrated on two- and
three-pedestrian data [Eq. (47)] compared to those obtained using
only two-pedestrian data [Eq. (37)] and to empirical data. r and
θ without any index stand for the two-pedestrian distributions.
For empirical distributions, the mode is shown in place of θ

and r . r variables in meters, θ variables in radians, v ones in
meters per second. For angular variables we use linear statistics on
−π < θ � 0.

Eq. (37) Eq. (47) Empirical

r 0.78 ± 0.09 0.77 ± 0.1 0.82 ± 0.19
θ −1.57 ± 0.31 −1.57 ± 0.29 −1.57 ± 0.35
r 0.76 0.78 0.73
θ 1.46 1.38 1.42
r12 0.79 ± 0.09 0.81 ± 0.1 0.85 ± 0.22
θ12 −1.46 ± 0.3 −1.38 ± 0.28 −1.29 ± 0.54
r13 1.54 ± 0.13 1.57 ± 0.14 1.46 ± 0.3
θ13 −1.57 ± 0.23 −1.57 ± 0.25 −1.59 ± 0.32
v(2) 1.160 ± 0.15 1.160 ± 0.1 1.159 ± 0.17
v(3) 1.098 ± 0.12 1.110 ± 0.09 1.112 ± 0.14
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FIG. 8. (Color online) Variable definitions for three pedestrian
groups.

suggesting that the forces of Eqs. (18) and (19) do not act
among them.33

Nevertheless, we may show that the proposed potential
can describe the three-person behavior in good agreement
with the empirical observations, provided that it is used as
a first-neighbor interaction term. Let us assume that this term
is the leading one in determining the group configurations and
examine its consequences for a three-person group. Let us
number the pedestrians in Fig. 8 as 1, 2, and 3 from left to
right in a reference frame with the y axis aligned to ĝ, i.e.,
with x1 � x2 � x3. The dynamics of the system is determined
by Eq. (4) in which, for each i, the values assumed by j are
i ± 1.

B. Equilibrium configuration: V formation

To compute the equilibrium configuration of a noiseless
system we may use a frame centered on the position of
pedestrian 2 and with y axis aligned with ĝ. Since the dis-
comfort function determining the interaction of 2 with the
pedestrians on the wings, D2j (r2j ), is symmetrical under the
operation θ → −θ , we seek a configuration that is symmetrical

33We performed the same analysis of Sec. VI B, i.e., the search
of a V-formation equilibrium configuration, assuming interaction
between all pedestrians. The numerical analysis gives a value of
r = 0.61 m for the distance between first neighbors, θ = 1.3 rad
for the half central angle of the V formation, and a velocity for a
noiseless three-person group of 0.85 m/s. These are not completely
unrealistic numbers, and such a “fully interacting” three-person
group could actually exist, but such evidence is not present in our
observations.

under reflection on the y axis (Fig. 8). In such a frame, and for
such a symmetrical configuration, the position of pedestrian 1
is given in polar coordinates by r12 = (r12,θ12) = (r, − θ ) and,
by symmetry, the position of 3 by r32 = (r32,θ32) = (r,θ ), with
0 < θ < π . The coordinates of the center of mass in this frame
are X = 0, Y = 2r/3 cos θ , and if we find in it a configuration
in which all pedestrians have the same acceleration with
respect to the environment, such a configuration represents
a relative dynamics equilibrium. By explicit computation of
the forces, or by symmetry principles, we may verify that for
each configuration as in Fig. 8 we have

F
y

21 = F
y

23; F
y

12 = F
y

32; Fx
21 = −Fx

23; Fx
12 = −Fx

32.

(38)

As a consequence, to have an equilibrium configuration, we
require, for the x component,

Fx
32 = Fx

12 = Fx
21 + Fx

23 ⇒ Fx
32 = 0 (39)

and, for the y component,

F
y

32 = F
y

12 = F
y

21 + F
y

23 ⇒ F
y

32 = 2F
y

23. (40)

We write these expressions explicitly as functions of r and
θ using Eqs. (18) and (19) and call θ and r the values
for which Eqs. (39) and (40) are satisfied. If such values
exist, the system has an equilibrium configuration symmetrical
around ĝ, corresponding to a � formation (central pedestrian
on the front) for θ > π/2, an abreast one for θ = π/2,
and a V formation (central pedestrian on the rear) for
θ < π/2.

After some algebra, we find that θ is determined only by ϕ

[i.e., by η, Eq. (22)],

3
(
θ − π

2

)
+ ϕ(1 − 4 cos2 θ ) = 0, (41)

while r is a function of r0, Cr/Cθ , and η,

r0

r
− r

r0
= 4Cθ cos θ

Cr sin θ

(
θ − π

2
− ϕ

)
. (42)

In Fig. 9(a) we show the numerical solution of Eq. (41), θ (η),
while in Fig. 9(b) we show the numerical solution of Eq. (42),
r(η,r0,Cr/Cθ ).

Recalling Eq. (29) and Table I, since v(1) > v(2) we have
η < 0 and thus θ < π/2. Our model thus predicts that for
a noiseless three-pedestrian system, i.e., a system described
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FIG. 9. (Color online) (a) θ (η). (b) r(η) for calibrated r0, Cr , and Cθ values. (c) R3(η). In the latter two figures, black solid lines use
parameters calibrated on two-pedestrian data [Eq. (37)], while red dashed lines use parameters calibrated on two- and three-pedestrian data
[Eq. (47)].
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by Eq. (4) with � = 0, the equilibrium configuration is a
V formation. For a system with noise, this turns into the
most probable configuration or the stable configuration in
the meaning of Ref. [14]. The V formation with the central
pedestrian on the rear is thus a consequence of applying
the first-neighbor version of our model to a three-pedestrian
system.

Using the parameter values calibrated in Sec. V we find
θ ≈ 1.46 rad (83◦) and r ≈ 0.76 m. Since the parameters of
Sec. V depend on Eq. (31), that provides an estimate of the
order of magnitude of the maximum acceleration Eq. (30), we
expect θ and r to provide the correct order of magnitude of
the deviation from abreast walking for three-person groups. If
the maximum acceleration Eq. (30) was explicitly measured,
the predictive value of the model could be tested more
strictly.

C. Three-person group velocity

We can now estimate the velocity of the three-person group.
In an abreast formation, which is not an equilibrium one for
η �= 0, the pedestrian at the center feels a force opposed to vp

with intensity 8Cθϕ/r0, i.e., twice the value given by Eq. (25)
felt by the other two pedestrians. As a result, for the group
velocity we obtain, from Eqs. (25) and (29),

v(3) ≈ v(1) − 4
3aη(r0)τ = v(1) − 4

3

(
v(1) − v(2)

)
. (43)

According to Eq. (43) the difference between the velocity of an
independent pedestrian and the velocity of a three-pedestrian
group should be roughly 4/3 the difference between the
velocity of an independent pedestrian and the velocity of a
two-pedestrian group. Applying this equation to the values of
Table I, we obtain an expected value of v(3) = 1100 mm/s,
i.e., less than one standard error from the observed value.
This estimate can be improved taking into account that the
equilibrium configuration is not abreast and that the actual y

acceleration is

A3 = −F
y

12

= −Cr

r0

(
r2

0

r2 − 1

)
cos θ − 4Cθ

r

(
θ − π

2
− ϕ

)
sin θ.

(44)

Let us define

R3 = A3
4
3aη(r0)

, (45)

of which Fig. 9(c) shows a numerical solution as a function of
η for the calibrated parameters. Since R3 attains a minimum
value >0.8 for |η| = 1, Eq. (43) gives a good approximation
of the three-pedestrian group velocity for any value of η [i.e.,
regardless of our assumption Eq. (31)34]. The value for the
three-person group velocity is

v(3) = v(1) − 4
3R3

(
v(1) − v(2)

)
, (46)

34r and R3 depend only on the ratio Cr/Cθ and not on the individual
values of these parameters, and thus the curves of Fig. 9 do not depend
on the estimate of Eq. (31).

FIG. 10. (Color online) (a) Empirical pdf ρ
(3)
E in a square area of

linear size 2.5 m around the center-of-mass reference frame for a
three-person group. (b) ρ

(3)
S in the same area. The graph shows the

probability of observing a pedestrian in each cell, according to the
logarithmic color bar. Probabilities outside [1.7 × 10−5,1.7 × 10−2]
are fixed to the extreme values. For the simulation, we used
model parameters calibrated only on the two-person distribution
[Eq. (37)].

which for the parameter values calibrated in Sec. V yields
v(3) = 1.104 m/s (R3 = 0.98).35

D. Simulation

Figure 10 compares the empirical three-pedestrian position
distribution to the one predicted by numerical integration of our
model using first-neighbor interaction in Eq. (4) with the pa-
rameters calibrated in Secs. IV–V.36 The simulation provides
a qualitative description of the three-pedestrian 2D probability
distribution, describing correctly the structure of the stable
configuration (maxima position) and to a good extent also
the shape of the distribution around these maxima. Similarly
to the two-pedestrian group case, the model underestimates
the probability of being located far from equilibrium, this
deviation being more severe in the three-pedestrian case.

From a quantitative point of view, for the simulated
system we have 〈θ12〉 = 1.46 rad (see Table III for a recap
of average values and standard deviations of empirical and
modeled observables), 〈r12〉 = 0.79 m and v(3) = 1.098 m/s,
in agreement with Eq. (46) and Table I. For the empirical
distributions we have 〈r12〉 = 0.85 m and 〈θ12〉 = −1.29 rad,
showing that the order of magnitude of deviation from abreast
walking is correctly predicted.

The prediction is also qualitatively quite accurate if we
focus on the position of the maximum value of the r12

and θ12 distributions (Fig. 11). The difference between the
average values as described by the model with respect to the

35Equation (46) was derived for a noiseless system, but our
simulations show that it applies also to the numerically simulated
noisy systems, provided that by v(2) we mean the actual average
velocity and not the lower analytical value given by Eq. (29). See
the discussion in Appendix C about the effect of noise (nonzero
temperature) on group velocity.

36In simulations, if two pedestrians switch position, their labels are
changed. In other terms, the central pedestrian is the one that is at
the central position at a given time and not the one that started at the
center.
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FIG. 11. (Color online) (a) pdf for the distance between the
pedestrian on the left and the central one, r12. Empirical distribution
in solid black; simulation using parameters calibrated only on
two-pedestrian group data [Eq. (37)] in dashed blue (dark gray);
simulation using parameters calibrated on two- and three-pedestrian
groups [Eq. (47)] in solid orange (light gray). (b) Same comparison
for the angle between the pedestrian on the left and the central one, θ12.

empirical ones is mainly due to the fact that the model fails in
describing the fat tail for r12 � r0 and the asymmetry of the
θ12 distribution.

E. Calibration on two- and three-pedestrian data

In order to avoid using Eq. (31) to estimate the maximum
acceleration Eq. (30), we may calibrate all the model param-
eters using both two- and three-pedestrian distribution data.
While this approach does not have the predictive value of the
one we followed up to now (using only two-pedestrian data to
qualitatively and quantitatively predict the stable configuration
and group velocity of three-pedestrian groups), it allows us to
obtain the best possible estimate for the parameters and to
investigate the extent to which the model can describe both
two- and three-person group behavior.

We use a genetic algorithm to find the parameter values that
minimize Eq. (37) for both two- and three-pedestrian distri-
butions and that provide the correct two- and three-pedestrian
group velocity. Namely, the error function minimized by the
algorithm is

εS ′ =
∑
k,i,j

(
ρ

(k)
S (xi,yj ) − ρ

(k)
E (xi,yj )

)2

ρ
(k)
E (xi,yj )

+
(
v

(k)
S − v

(k)
E

)2

(
σ

(k)
e + σ

(1)
e

)2 ,

(47)

with k = 2,3, where ρ
(k)
S is the k-person-simulated distribu-

tion, ρ(k)
E is the corresponding empirical one, v(k)

S is the average
k-person group velocity according to simulations, while v

(k)
E

and σ (k)
e are the empirical k-person group average velocity and

standard error as reported in Table I.37

37In Eqs. (36) and (37), dividing by ρ instead of ρ2, we took into
account the different number of data points related to each ρ value,
i.e., we gave a larger weight to high ρ values. In Eq. (47) we use
the same principle, but since both ρ(2) and ρ(3) are normalized so
that

∑
i∈cells ρ

(k)
i = 1, we are not taking into account in the ρ part

of the error function the fact that the two-person observations are
based on a larger amount of data (Table I), in order not to create
an unbalance in calibration between the two-person and three-person
distributions.
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FIG. 12. (Color online) (a) y dependence of ρ
(3)
E (solid line)

compared to the y dependence of ρ
(3)
S (dashed) for different values of

x. The black lines show the y dependence along the most probable x

position of the pedestrian on the left wing, while orange (light gray)
lines are used along the x position of the central pedestrian. (b) x

dependence of ρ
(3)
E (solid line) compared to the x dependence of ρ

(3)
S

(dashed) for different values of y. The orange (light gray) lines show
the x dependence along the most probable y position of the central
pedestrian, while the black lines are used along the y position of the
wing pedestrians. In both figures ρ

(3)
S was obtained using parameters

optimized using Eq. (47), i.e., both two- and three-pedestrian group
data.

Table II shows the calibrated values, comparing them with
those obtained using Eq. (37). The ratio Cr/Cθ was lower but
close to the value obtained calibrating on two-pedestrian data,
resulting in a two-pedestrian distribution basically equivalent
to the one we found previously (see Table III). The ratio Cr/r0

is now ≈1, so the maximum acceleration is ≈1 m/s2, a factor
2 weaker than our estimate. As a result, to obtain the correct
value for aη [Eq. (25)], we have an increase in the absolute
value of η.

Table III shows the average values and standard deviations
of the main observables obtained using parameters calibrated
on two- and three-pedestrian data [Eq. (47)], comparing them
to those obtained using only two-pedestrian data [Eq. (37)]
and to empirical data.

As evident from Table III and Fig. 11, the parameters cali-
brated using Eq. (47) provide a better quantitative description
of the deviation from abreast walking, even though they still
fail to describe the asymmetric nature of the θ12 distribution.
In Fig. 12(a) we compare the y dependence of ρ

(3)
E and ρ

(3)
S

[optimized according to Eq. (47)] for different values of x,
while in Fig. 12(b) we perform the same comparison for the x

dependence at different values of y.38

This comparison shows that the position of the maxima,
both for the pedestrian on the center and for the pedestrians on
the wings, is identified with a precision of at least 10 cm. In
particular, the distribution around the equilibrium position for
both the central and wing pedestrians is very well described,
in maxima and deviations, along the y direction (direction of
motion).39 In the x direction, while the position of the central
pedestrian is well identified, the pedestrians on the wings are

38These x and y values correspond to the ρS maxima.
39Due to the fat tails in empirical distributions, and thus to the wider

spread of the 2D normalized distributions in the direction not shown,
the empirical distributions appear to have a lower integral at fixed x

or fixed y.
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FIG. 13. (Color online) (a) pdf for the distance between the
pedestrians on the wings, r13. Empirical distribution in solid black;
simulation using parameters calibrated only on two-pedestrian group
data [Eq. (37)] in dashed blue (dark gray); simulation using parame-
ters calibrated on two- and three-pedestrian groups [Eq. (47)] in solid
orange (light gray). (b) Same comparison for the angle between the
wing pedestrians, θ13.

described by the first-neighbor model as farther apart than
they are in the empirical distribution. Such a weak point of
the model is confirmed by the poor description of the r13

distribution [Fig. 13(a)]. On the contrary, the θ13 distribution
is very well described and also very well predicted by the
model calibrated only on two-pedestrian data [Fig. 13(b)].
The parameters calibrated using Eq. (37) and Eq. (47) provide
basically an equivalent description of two-pedestrian groups
(Table III), and a quite similar one for three-pedestrian groups,
suggesting that the model does not depend very strongly on
the specific parameter values.

F. Limitations in the description of three-person groups

The first-neighbor model calibrated on two-pedestrian data
[Eq. (37)] could qualitatively and quantitatively describe the
most probable configuration and the velocity of the three-
pedestrian groups. Furthermore, the quantitative description
was significantly improved after calibration on all the available
data [Eq. (47)]. According to us, these results show that the
main features of the three-pedestrian group dynamics may be
described on the basis of our first-neighbor model developed
for the two-pedestrian case.

Nevertheless, in an actual fully interacting three-pedestrian
group, the pedestrians on the wings are aware of each other,
and their presence should affect each other’s dynamics. By
neglecting this interaction we obtained a good description of
the three-person dynamics, showing that the first-neighbor
term is the leading one, but the second-neighbor term is
definitely present as a perturbation.

The presence of this term is probably the cause of the main
deviations of our model from the empirical distributions, which
are as follows:

(a) the overestimate of the distance between the pedestrians
on the wings, r13;

(b) the absence of asymmetry in the θ12 distribution; and
(c) the underestimate of the width of the distributions

(standard deviations) around maxima.
The first effect could be due to an attractive term between

the two pedestrians on the wings, while the second one could
be due to the discomfort that the pedestrians on the wings

FIG. 14. (Color online) (a) Four- and (b) five-person group pdfs
(logarithmic plots) obtained using parameters optimized by Eq. (47).
Panel (a) shows a 3.5-m-wide area, while panel (b) shows a 4.5-m-
wide area.

would feel if the central pedestrians hinder their gaze, and thus
their communication, with their presence. This term would
emerge when θ12 = −θ32 ≈ π/2 and be negligible for lower
values of |θ |, leading to the asymmetry in the distribution of
Fig. 13(a). Finally, the presence of these perturbing terms could
cause the large spreads around the maxima for the empirical
three-pedestrian distributions.

VII. LARGER GROUPS

We applied the first-neighbor model to four- and five-
person groups, obtaining the results of Fig. 14. Simulated
pedestrians walk mostly abreast at a distance of ≈r0 in
slightly U bent formations (the central pedestrians on the
rear). The velocities are 1.09 m/s for n = 4 and 1.08 m/s for
n = 5.

These results are in agreement with the findings of Ref. [5],
provided that, as it happened for three-person groups, bent for-
mations emerge also for unconstrained groups. Furthermore,
the result for the four-person group velocity is in agreement
with Table I. We also notice that the four-person distribution
is quite similar to the one observed by Ref. [4]. This latter
work uses short time window observations, and thus their
recognition of four-person groups is biased towards groups
that are actually fully interacting at the moment of observation.
Their observations thus suggest that at a time in which all the
members of the group are involved in the same conversation,
our first-neighbor model correctly describes their interaction.

Nevertheless, our observations, based on longer time
windows, suggest that such full member interactions are very
limited in time for groups with more than three members.
Indeed, we have not observed in our environment such U-
shaped formations in large groups, or at least they are not stable
in the sense of that described in Ref. [14]. In this latter work
we analyzed the spatial distribution of four-person interacting
groups and verified that they do not present a stable four-person
structure like those found for two- and three-person groups.

We found, conversely, that four-person groups present
stable two-person subgroups, whose structure resembles
the one described by our model. We believe that when
they form a two- or three-person subgroup, pedestrians
become almost neutral to the interaction with the other
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FIG. 15. (Color online) Logarithmic plots for (a) empirical pdf for the position of a pedestrian in the center-of-mass frame of a four-person
group; (b) empirical pdf for the position of a pedestrian in the center-of-mass frame of a two-person subgroup; (c) empirical pdf for the position
of a two-pedestrian subgroup in the overall four-person group center-of-mass frame. Black indicates maximum probability and white minimum
probability. Each area is 2.5 m wide.

members of their group. The inter-sub-group interaction is
then described by the same potential used in this paper
but perturbed by a weaker interaction term with the other
members.

Figure 15(a) shows the center-of-mass reference frame
probability distribution for four-person groups, without any
stable formation. In Fig. 15(b) we show the probability
distribution for two-person subgroups40 that resembles the
distribution generated by our potential. Finally, in Fig. 15(c) we
show the distribution for the position of the two subgroups’
centers of mass in the overall center-of-mass frame. Such a
distribution suggests a weaker θ dependence with minima at
θ = nπ/2, n = −1,0,1,2 (the minima for ±π/2 appear to
be at a slightly higher distance). We leave a mathematical
treatment of this potential for future work, considering
also the limited amount of four-person groups observed
(Table I).

VIII. DISCUSSION AND CONCLUSIONS

In this paper we introduced a simple potential for the
discomfort of a pedestrian that is not located in the op-
timal position for interacting with a walking partner. By
assuming that the potential is the sum of a radial term
and a quadratic angular term, we obtained a very good
description of the probability distribution around the position
of maximum comfort (both using the theoretically predicted
Boltzmann distribution or using the results of numerical
integrations).

In the model we decided to introduce the term η that
is not directly observable when studying the two-pedestrian
relative distance distribution. This term arises naturally in
the formulation of our angular discomfort potential, Eq. (13),
as the relative weight that the pedestrians give to the angle
that their gaze has to span with respect to the partner’s
corresponding angle. The simplest hypothesis would be to

40In Ref. [14] we explain the detail of the algorithm for the division
in subgroups. Basically, we look for abreast configurations at a 0.75-m
distance. We also checked that other ways of dividing the group did
not lead to the identification of a stable structure.

assume symmetry and put η = 0. Nevertheless, an η < 0 value
explains, without any other assumption, two of our empirical
findings as follows:

(1) Groups are slower than single pedestrians, and the
difference in velocity between three-pedestrian and two-
pedestrian groups is roughly one-third of the difference be-
tween two-pedestrian groups and single pedestrians [Eqs. (29),
(43), and (46)].

(2) Three-pedestrian groups walk in a V formation with
the central pedestrian on the rear.

We consider these two results the most relevant success of
our model.

It is arguable that the cognitive process that leads to these
results may differ from the one that led us to Eq. (13):
η < 0 may represent not an asymmetrical preference to
walk on the rear and having the partner in the field of
view (more than being in the partner’s field of view) but a
more symmetrical term, as the load of being involved in a
conversation, and having the gaze span an angle ψ , causes
a slower walking velocity. The good results of our model
make us assume that, even if the cognitive process is the latter,
our mathematical framework is adequate to describe its main
features.

The model can describe the most probable position of
pedestrians in two- and three-person groups in 2D space
(Figs. 6 and 12). For two-pedestrian groups, the description
of the distribution around the maxima is also quite good,
and the model only fails in describing the “fat tails” far
from equilibrium. Since the hypotheses that led us to the
formulation of the model are valid close to equilibrium, this
failure appears to be a minor one. For three-pedestrian groups,
the description of the distribution around maxima is less
precise. In particular, the model seems to fail in describing
the asymmetrical distribution of the angle θ12 around its most
probable value and overestimates the distance between the
pedestrians on the wings, r13. As discussed in Sec. VI F,
these limitations are probably due to the presence of a
three-person specific interaction term between the pedestrians
on the wings. In this paper we ignored any such term,
assuming that the first-neighbor interaction would be the
leading one and would allow us to describe to a good extent
the three-person structure based on the two-person one, and
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our results supported this hypothesis. Nevertheless, including
the interaction terms described in Sec. VI F could further
improve the ability of our model to reproduce pedestrian
behavior.

Possible improvements to the model include a description
of the splitting of large groups into subgroups (as mentioned
in Sec. VII) and that of the interaction between subgroups,
dealing with the three-person-specific terms described in
Sec. VI F, and introducing into the model a group-specific
collision avoidance behavior that may reproduce the higher-
density results of Ref. [5] while obtaining at lower densities
the results of the current work. Such a collision avoidance
behavior should also take into account the specific behavior of
pedestrians towards groups.
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APPENDIX A: DEFINITION OF STATISTICAL
OBSERVABLES

When talking about statistical properties of a two- or three-
body system we necessarily adopt an ergodic point of view,
in which physical observables (basically, in the scope of this
paper, the position probability distribution)41 are determined
by time integrals

f̄ = lim
T →+∞

∫ T

0 f (t)dt

T
. (A1)

Nevertheless, obviously our real-world observations are not
based on a single pedestrian pair followed for an infinite time
but on N pedestrian pairs followed for finite time, such that
the observables are given by

〈f 〉 =
N∑

k=1

∫ Tk

0 fk(t)dt

TkN
, (A2)

41In this work we deal mainly with discretized version of pdfs.
For example, the probability density for the distance between two
pedestrians ρ(r) is approximated by P (r,�r), the probability of the
distance to assume values between r − �r/2 and r + �r/2. The
computation of P involves time integrals (or better summations over
discrete times) of the characteristic function χ (r,�r) in the form of
Eqs. (A1) or (A2).

with finite N and observation times Tk . When we claim that �

may be treated as a white noise, we mean that when studied
over a

∑
k Tk time scale its distribution can be approximated

by a random one. We also note that we cannot assume all
pedestrians to behave in the same way, and the interaction
force F will be, in general, pedestrian dependent. Still, if
the pedestrian behavior parameters are considered normally
distributed, we may include their effect in the term ξ of Eq. (1)
[and thus in � of Eq. (4)] and assume that our observations
Eq. (A2) are given by Eq. (A1) for the dynamical system of
Eq. (4).

APPENDIX B: INDEPENDENCE OF θ AND r

When introducing the full form of the potential D, Eq. (17),
we assumed the independence of the variables θ and r .
We analyzed the linear correlation index between the angle
−π < θ � 0 that gives the position of the pedestrian on the
left with respect to the center of mass in a two-pedestrian group
(here left is defined with respect to the y axis aligned with ĝ),
and the distance r , as

Ic = 〈θr〉 − 〈θ〉〈r〉√
〈θ2〉 − 〈θ〉2

√
〈r2〉 − 〈r〉2

, (B1)

and there was no significant linear correlation (Ic = 0.0007).
To investigate a possible nonlinear dependence between the
variables, we computed the mutual information and joint
entropy of the θ and r distributions. We discretized the
variables in uniform cells and computed the empirical prob-
ability distributions ρ(θi), ρ(ri), and ρ(θi,rj );42 the mutual
information is given by

I (	; R) =
∑

i,j∈cells

ρ(θi,rj ) log2

(
ρ(θi,rj )

ρ(θi)ρ(rj )

)
, (B2)

while the joint entropy is given by

H (	,R) = −
∑

i,j∈cells

ρ(θi,rj ) log2 (ρ(θi,rj )). (B3)

The Jaccard distance

D(	,R) = H (	,R) − I (	; R)

H (	,R)
, (B4)

which would have a value of 1 for uncorrelated variables,
assumes D(	,R) ≈ 0.99 with extremely weak dependence
on the chosen discretization steps. For a result obtained with
a different tracking method and in a different cultural context,
see the (r,θ ) distribution in Ref. [48].

APPENDIX C: THERMAL CORRECTIONS TO
THE TWO-PERSON GROUP VELOCITY

To estimate the two-pedestrian group velocity in Eq. (29)
we assumed the system to be at zero temperature and thus the
center-of-mass acceleration to be directed along ĝ. We may,
nevertheless, evaluate the average force along y for nonzero

42Strictly speaking, ρ is a probability and not a pdf.
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TABLE IV. Agreement between the two coders on pedestrians
being or not part of a group. The ratio of pedestrians in groups over
all pedestrians was ≈0.19.

A = 0 A = 1

B = 0 9562 45
B = 1 365 2227

temperature recalling Eq. (24) and using

Fy = 4Cθϕ

∫ π

0 dθ
∫ +∞

0 dr sin θ e
− U (r,θ )

T�∫ π

0 dθ
∫ +∞

0 dr r e
− U (r,θ )

T�

. (C1)

We may expect the correction to Eq. (29) to be a power series in
the adimensional temperature terms T�/(4Cθ ) and T�/(2Cr ) of
Eq. (32). According to the analysis of Sec. IV, Cr is one order
of magnitude higher than Cθ , so we may expect the angular
integral to give the strongest correction. This integral may
be solved assuming

√
T�/(4Cθ ) � π/2. Changing variable to

θ ′ = θ − π/2 and setting a = T�/(4Cθ ) we have

∫ π

0 dθ sin θ e
− U (r,θ )

T�∫ π

0 dθ e
− U (r,θ )

T�

≈ Iθ ≡ (2πa)−
1
2

∫ +∞

−∞
dθ ′ cos θ ′e− θ ′2

2a .

(C2)

Expanding cos θ ′ as a power series and using the Gaussian
integral formula, we get

Iθ =
∞∑

n=0

(−)n
(2n − 1)!!

2n!
an =

∞∑
n=0

1

(2n)!!
(−a)n

=
∞∑

n=0

1

n!

(−a

2

)n

= e− a
2 , (C3)

where we used the relation (2n)!! = 2nn!. We may use Eq. (C3)
[or a numerical estimate of Eq. (C1)] in place of Eq. (29)
to estimate η as we did in Sec. IV C. We find values of
ηanalytic = −0.214 using Eq. (C3) and ηnumerical = −0.22 using
the numerically computed value of Eq. (C1). When these η

values are used in the simulator of Sec. V we obtain average

values of V
analytic
y = 1161 mm/s and V

numerical
y = 1156 mm/s,

showing agreement between the analytical results of Sec. IV
and the numerical ones of Sec. V.

We nevertheless notice that for these numerically inte-
grated systems, the average center-of-mass velocity V was

≈1170 mm/s due to the effect of a nonzero V
2
x component

at nonzero temperature. Given our operational definition of
empirical observables [Eq. (34)], only the average velocity
V is observable for actual pedestrian groups, while our

TABLE V. Cohen κ coefficient [Eq. (D1)] and agreement rate
Pa for pedestrian groups being coded as fully connected socially
interacting by the coders.

n = 2 n = 3 n = 4

κ 0.62 0.63 0.62
Pa 0.89 0.86 0.81

estimates for the group velocities based on Eqs. (29), (43),
(46), (C1), and (C3) are more properly given for the average
velocity in the goal direction. Nevertheless, as discussed above,
by numerically integrating the three-pedestrian system we
find a difference between V and V y which is of the order
of magnitude of the standard error of the measurement of
pedestrian group velocity, confirming that Eqs. (29), (43),
and (46) may be used to obtain a reliable estimate of group
velocities.43

APPENDIX D: CODERS AGREEMENT

Table IV shows the number of pedestrians coded as
members of groups by both coders (A and B), nA=1,B=1; by
none of them, nA=0,B=0; or those on which they disagree,
nA=1,B=0 and nA=0,B=1.44

To evaluate the quality of the agreement between coders, we
may use the Cohen’s κ coefficient. If Pa is the agreement rate,
and Pra the probability of random agreement, the coefficient is
defined as

κ = Pa − Pra

1 − Pra
. (D1)

For the data of Table IV we have Pa = 0.97 and κ = 0.895
(Ref. [49] considers 0.6 < κ � 0.8 as substantial agreement,
and κ > 0.8 as almost perfect). Table V shows the κ and Pa

values for groups being coded as fully interacting or not by the
coders.

APPENDIX E: EULER INTEGRATOR

Equation (4) is discretized as

v(t + �t) =v(t) + (Fns(x(t),v(t)) + �(t))�t,

x(t + �t) =x(t) + v(t + �t)�t,
(E1)

where Fns includes all nonstochastic acceleration terms.

43Assuming thermal corrections to be small, and more or less
equivalent for the two- and three-pedestrian groups, we understand
the validity of Eq. (46). This latter equation is almost exact if thermal
corrections in three-person groups are ≈4/3 times the two-person
corrections.

44Over N = 12 199 pedestrians on 9 h of data.
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