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Spatial-size scaling of pedestrian groups under growing density conditions
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We study the dependence on crowd density of the spatial size, configuration, and velocity of pedestrian
social groups. We find that, in the investigated density range, the extension of pedestrian groups in the direction
orthogonal to that of motion decreases linearly with the pedestrian density around them, both for two- and three-
person groups. Furthermore, we observe that at all densities, three-person groups walk slower than two-person
groups, and the latter are slower than individual pedestrians, the differences in velocities being weakly affected
by density. Finally, we observe that three-person groups walk in a V-shaped formation regardless of density,
with a distance between the pedestrians in the front and back again almost independent of density, although the
configuration appears to be less stable at higher densities. These findings may facilitate the development of more
realistic crowd dynamics models and simulators.
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I. INTRODUCTION

Crowd dynamics modeling is an active and promising
field in which physical science methods, such as molecular
dynamics, fluid dynamics, or cellular automata, are applied to
social systems [1–9]. Social groups, which represent in some
environments up to 85% of the walking population [10,11],
may be considered as bound systems composed of individual
pedestrians, and thus they represent, to some extent, for
the pedestrian crowd what molecules are in a fluid. It
should indeed be expected that such groups, walking in a
characteristic configuration [10–14] and with slower velocity
than pedestrians outside groups [11,14–16], have an important
influence on the dynamics of the crowd. Nevertheless, until
recent times, their presence has been largely ignored in the
development of crowd dynamics models.

In the last few years, a few models describing group
dynamics have been introduced [11,17–19] (see also [20] for
a recent review of the field), but they often rely on a quite
simplistic description of groups, both in their free-walking (or
low-density, ρ → 0) behavior and in their reaction to growing
density conditions. For example, a seminal work in the field
is [11], which introduces a model describing pedestrian groups
as abreast when freely walking, and bending to V and U
formations in higher density conditions. While this model ex-
plains correctly some features of group behavior, its calibration
was performed on only two density values; furthermore, the
description of free-walking groups as abreast is in contrast with
other qualitative and quantitative observations [10,12,13].

In [14] we introduced a non-Newtonian1 potential for the
dynamics of pedestrian groups in the low-density limit. Writing
the relative position of two socially interacting pedestrians i

and j as rij = (r,θ ), where θ = 0 gives the direction to the
pedestrians’ goal, we made the hypothesis that the discomfort
of i due to not being located in the optimal position for social

*zanlungo@atr.jp
1Here by non-Newtonian we mean not obeying the third law of

dynamics, i.e., fij �= fji . Refer also to [21] for the importance of such
potentials to pedestrian studies.

interaction with j is given by

U
η

ij (r,θ ) = R(r) + �η(θ ),

R(r) = Cr

(
r

r0
+ r0

r

)
, (1)

�η(θ ) = Cθ {(1 + η)θ2 + (1 − η)[θ − sgn(θ )π ]2},
where r0 is the most comfortable interaction distance, and
−1 � η < 0.2 Assuming that the acceleration of the pedestrian
i due to group dynamics, i.e., to the action of the pedestrian
aimed to minimize social interaction discomfort with respect
to j , is given by

fij = −∇iU
η

ij , (2)

the model predicts the following:
(i) Two-person groups are slower than individual pedestri-

ans, i.e., naming v(ng ) the average velocity of a group of size
ng , we have

v(1) > v(2). (3)

(ii) Three-person groups are even slower, i.e.,

v(2) > v(3), (4)

with the following relation holding between the different group
velocities:

v(1) − v(2) ≈ 3(v(2) − v(3)). (5)

(iii) Three-person groups walk in a V formation, with the
central pedestrian walking slightly behind.

After providing an estimate for what can be considered
low-density conditions,3 we successfully compared our model
to Japanese pedestrian real-world data. Furthermore, the
predictions regarding group velocity are in good agreement
also with the results of [15,16], and thus they appear to have

2In Eq. (1), we are assuming that θ takes values in (−π,π ], and
using sgn(0) = −1 in order to have a continuous potential. Refer to
the original work for details.

3Basically, the expected distance to a pedestrian outside the group,
or to a wall, has to be considerably larger than the spatial extension
of the group.
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FIG. 1. (Color online) Pedestrian density map of the tracking
area. The “corridor,” whose data were used for this work, is limited by
the black lines. The map uses A = 0.25 m2 sized cells, and averages
over positions of pedestrians with velocity v > 0.5 m/s, in order
to compute density. The figure shows a time average over all data
collected on a particular day, namely May 5th 2013.

a cross-cultural value. The model may describe also larger
pedestrian groups, predicting that they walk in U formations
with central pedestrians slightly behind, in agreement with
the observations of [10,11]. Nevertheless, these works used
short observation times, thus the stability of these structures
could not be assessed. As reported in [13,22], large group
structures are unstable, and usually break in stable subgroups
of two or three units. We thus believe that larger groups should
be modeled through the interactions of their stable subgroup
components, and that to attain this end a full understanding of
two- and three-person groups has to be reached first.

In the present work, we try to understand, from an empirical
point of view, i.e., analyzing a large set of real-world pedestrian
data, how the velocity, spatial structure, and extension of two-
and three-person groups change beyond the low-density limit.

II. DATA COLLECTION

A. Tracking

The pedestrian trajectories were collected in the Asia and
Pacific Trade Center (ATC), a multipurpose building located
in the Osaka (Japan) port area. Using three-dimensional (3D)
range sensors and the algorithm described in [23], we tracked
the position and velocity of pedestrians in a ≈900 m2 area of
the building for more than 800 h during a one-year time span,
and we video recorded the tracking area using 16 different
cameras. The environment, described in detail in [24] and
shown in Fig. 1, consists mainly of a large atrium and a
long “corridor,” and it has a mixed population composed of
commuters and local workers (prevalent on working days) and
shoppers (prevalent on nonworking days). For the purpose of
this work, in order to avoid taking into consideration the effect
of architectural features of the environment, such as its width,
we use data only from the corridor area (as defined in Fig. 1).4

While our tracking system provides us with pedestrian
position and velocities at time intervals δt in the order of

4This corridor, having a width of ≈3 m, is considerably narrow
compared to the environment studied in [14].

tens of milliseconds, we average pedestrian positions over
time intervals �t = 0.5 s to reduce the effect of measurement
noise and the influence of pedestrian gait. We obtain pedestrian
positions at discrete times k as

x(k�t) = (x(k�t),y(k�t)), (6)

and we define pedestrian velocities as

v(k�t) = {x(k�t) − x[(k − 1)�t]}/�t. (7)

B. Criteria for data collection

We are interested in groups of pedestrians that are walking
and socially interacting. To identify them, and to verify their
social interaction, we asked one of the coders that we used for
our previous work [14] to analyze 24 h of video recording5

from four different cameras located in the corridor area.6

As for the data used in [14], the coder was asked to identify
all pedestrian groups, based on any kind of motion or visual
cue, and between all groups to identify those pedestrians that
were socially interacting. The definition of social interaction
was based on conversation and gaze clues [25,26]. Overall
she identified 9973 pedestrian groups of sizes from 2 to 21,
for a total of 24 565 pedestrians, of which 21 463 (87%) were
properly tracked by our system. Pedestrians that were identi-
fied as socially interacting did not necessarily interact during
the whole tracking time, while pedestrians tracked as not
interacting could have been interacting when tracked but not
visible from the camera.7 All the tracking data and annotations
used for this work are available at www.irc.atr.jp/sets/groups/.

As we did in [14], we analyzed only fully interacting
groups, i.e., groups in which at least one of the members was
coded as having social interaction with all the other members.
We also excluded groups in which wheelchairs or strollers
were present.

Regarding the groups that satisfied the above requirements,
we used only data points in which all pedestrians in the group
have a velocity with magnitude vi > 0.5 m/s,8 and in which
also the overall group velocity satisfies V = |∑ng

i=1 vi |/ng >

5Twelve hours from three different working days, and 12 h from
three nonworking days. The specific hours were chosen in such a
way to represent the different behavior and density patterns of the
environment.

6The coder analyzed thus 96 h of video recording and compared
them to the tracking data. This is already a very large workload, and
for this reason it was impossible either to analyze all the cameras
located in the corridor area or to use both coders that worked on the
data used in [14].

7The coding process was designed to avoid the presence of false
positives, while allowing for false negatives. Nevertheless, asking the
coder to annotate the exact time of interaction would have increased
her workload too greatly. In any case, we removed from our analysis
some groups for which the coder explicitly wrote in her annotations
that the interaction was extremely short.

8As explained in [27], the threshold is chosen in such a way to
clearly separate the velocity distribution of walking and standing
pedestrians (the latter having in our system a nonzero velocity due to
noise and nonwalking body movement), and results are not sensitive
to slight modifications to it.
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FIG. 2. (Color online) Definition of the two- and three-person
group observables.

0.5 m/s.9 Finally, only data points in which all pedestrians fall
inside a square with side 2.5 m centered on the group center
were used.10

After this filtering process, the data set used for this work
consisted of 162 547 observation points of 3305 two-person
socially interacting groups, and 21 231 observation points of
602 three-person interacting groups. In what follows, we will
refer to this interacting two- and three-person group data set
as the “ATC data set.”

III. OBSERVABLES

Based on the insight on group behavior obtained in [11,14],
in order to analyze the structure and velocity of groups, we
may define the following observables (see also Fig. 2).

A. Group center and velocity

Let us consider a group with ng pedestrians whose positions
and velocities are given by vectors xi , vi , 1 � i � ng . Let us
define the group center X and velocity V as

X ≡
∑ng

i=1 xi

ng

, (8)

V ≡
∑ng

i=1 vi

ng

. (9)

It is also useful to define the group walking direction unit
vector as

V̂ ≡ V
|V| . (10)

B. Group reference frame

Considering the position of pedestrians with respect to the
center, ri ≡ xi − X, we may define their components along

9This requirement, introduced to further assure that the pedestrians
are moving as a group, was not present in [14], but it changes the
results in a negligible way.

10This threshold is located in such a way to include the bulk of spatial
distributions of interacting pedestrians, and results depend weakly on
its specific value. The reason for the introduction of such a threshold
was to exclude data points in which the groups had suspended their
interaction and spatially separated.

and orthogonal to the group velocity as

yi ≡ ri · V̂, (11)

xi ≡ (ri ∧ V̂) · n̂, (12)

where n̂ is an outgoing unit vector normal to the walking plane.
Finally, we may relabel the pedestrians in such a way to have
xi � xj for i < j , i.e., x1 will be the leftmost and xng

the
rightmost pedestrian with respect to the axis determined by
the group velocity.

C. Two-person groups

1. Abreast extension

The abreast extension, i.e., orthogonal to the walking
direction, of the group may be defined as

xg2 ≡ x2 − x1. (13)

2. Walking direction extension

The extension in the direction of walking may be defined
as

yg2 ≡ y2 − y1. (14)

D. Three-person groups

1. Abreast extension

The abreast extension, i.e., orthogonal to the walking
direction, of the group may be defined as

xg3 ≡ x3 − x1. (15)

2. Walking direction extension

We define the extension of the group in the walking
direction as

yg3 ≡ (y3 + y1 − 2y2)/2. (16)

The advantage of this definition is that it automatically
specifies the group configuration, assuming a value yg3 > 0
for a V formation and a value yg3 < 0 for a 	 formation with
the central pedestrian walking ahead [14].

IV. RESULTS AND DISCUSSION

For all the above observables, we compute the dependence
on local density of the average value and of the probability
distribution function according to the procedure described in
Appendixes A, B, and C.

A. Velocity

Figure 3 shows the density dependence of group velocity
V = |V|, for two- (V = v(2)) and three- (V = v(3)) person
groups, compared to the velocity of individuals walking alone
(v(1)). Surprisingly, v(1) and v(2) assume a maximum around
ρ ≈ 0.03. This may be due to the following: (i) “rush hours,”
during which pedestrians walk faster even if the density is
higher, as reported in [24], and (ii) low-density areas (visible
in white in the corridor area of Fig. 1), in which pedestrians
may exhibit wandering behavior.
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FIG. 3. (Color online) ρ dependence of pedestrian velocity. Indi-
vidual pedestrians in black circles, two-person groups in red squares,
three-person groups in blue triangles. Continuous lines provide
standard error confidence intervals, while dashed lines provide a linear
fit of the data (limited to the common definition range), given by a
law v(i) = αi + βiρ, with α1 = 1.286 m/s, β1 = −1.072 m3/(ped s),
determination coefficient R2

1 = 0.949; α2 = 1.147 m/s, β2 = −0.931
m3/(ped s), R2

2 = 0.976; α3 = 1.092 m/s, β3 = −0.799 m3/(ped s),
R2

3 = 0.971.

For ρ > 0.05, velocity appears to decrease almost linearly
in the observed density range, in a way similar for all group
sizes, although the effect appears to be stronger for smaller
groups, i.e., individuals are the most affected by density, while
three-person groups are the less affected, as shown by the linear
fits in Fig. 3. The ρ → 0 results of Eqs. (3) and (4) are valid
for all empirical values of ρ for which a comparison between
v(1), v(2), and v(3) was possible. Regarding the extension to
higher density of the relation of Eq. (5), we may observe that
we have for all values of ρ

v(1) − v(2)

v(2) − v(3)
> 2, (17)

with most values between 2 and 4, and a tendency of this ratio
to increase with ρ, as shown in Fig. 4. Furthermore, if we
perform a linear fit v(i) = αi + βiρ, as shown in Fig. 3, we
obtain

α1 − α2

α2 − α3
≈ 2.6, (18)

in substantial agreement with the prediction of Eq. (5).11

11We should nevertheless stress that in the ATC data set, we did not
have an explicit coding of individual pedestrians, which, on the other
hand, was available for the data set of [14]. We thus followed the same
approach that we introduced in [24] to avoid false detections, and we
defined as individual pedestrians all pedestrians not coded as part
of groups that remained in the environment for at least 8 s and that
had a vectorial average velocity (displacement over time) larger than
0.5 m/s (this latter requirement was applied also to two- and three-
person groups, although these have been explicitly coded, to avoid
a bias in the results concerning velocity averages.). We verified that
the results shown in this section are not significantly affected by
modifications in these thresholds.
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FIG. 4. (Color online) Black and circles: ρ dependence of (v(1) −
v(2))/(v(2) − v(3)), computed using the average values of Fig. 3.
Dashed red: in order to decrease the effect of fluctuations, the same
ratio is computed using the linear fits of Fig. 3.

B. Two-person groups

Figure 5 shows the density dependence of the average value
of xg2 [Eq. (13)], compared to a linear fit of the average
value data points.12 We may see that the abreast extension
of the group is reduced with growing density, and that in the
studied range the dependence can be reasonably approximated
as linear. By examining the probability distributions for xg2 in
different ρ ranges (Fig. 6), we may notice that this effect is
due to a progressive, even if moderate, displacement of the
peak position, and to a stronger reduction of the high x tail,
to which corresponds an increased probability to have x ≈ 0
(pedestrians have a higher probability of following each other).

12Given by xg2 = α + βρ, with α = 0.646 m and β = −0.538
m3/ped, and determination coefficient R2 = 0.977.
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FIG. 5. (Color online) ρ dependence of xg2 [Eq. (13)], in black
circles, compared to a linear fit of the data (dashed red). Continuous
lines provide standard error confidence intervals.
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FIG. 6. (Color online) Probability distributions for xg2 [Eq. (13)],
in different ρ ranges. The inset graph shows the position of the
mode as a function of ρ. A one-way ANOVA analysis shows that
the distributions in the figure are different in a statistically significant
way (p < 10−8).

As shown in Fig. 7, the probability distribution for the
extension of the group in the walking direction is centered
around 0, i.e., the group walks in an abreast configuration,13

while the spread of the distribution appears to grow slightly
with increasing density.

C. Three-person groups

Figure 8 shows the density dependence of xg3 [Eq. (15)],
compared to a linear fit of the average value data points,14 and

13We have nevertheless evidence of a very weak left-right asymme-
try, as discussed in Sec. IV D.

14Given by xg3 = α + βρ, with α = 1.096 m and β = −1.370
m3/ped, and determination coefficient R2 = 0.939.
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FIG. 7. (Color online) Probability distributions for yg2 [Eq. (14)]
in different ρ ranges. The inset graph shows the position of the
mode as a function of ρ. A one-way ANOVA analysis shows that the
distributions in the figure are not different in a statistically significant
way (p ≈ 0.35).
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FIG. 8. (Color online) Black circles: ρ dependence of xg3

[Eq. (15)], compared to a linear fit of the data (dashed red). Blue
squares: ρ dependence of yg3 [Eq. (16)]. Continuous lines provide
standard error confidence intervals.

of yg3 [Eq. (16)]. The average abreast extension of the group is
again decreasing with growing ρ and, while the effect seems to
be weaker for higher density, the linear approximation is still a
good one in the observed range. The probability distributions
for xg3 are shown in Fig. 9, where we can see that with growing
densities the bulk of the distribution is displaced toward lower
x values; furthermore, for high ρ the probability distribution
becomes narrower and more peaked.

From Fig. 8, showing that yg3 always assumes a positive
average value, and from the yg3 probability distributions shown
in Fig. 10, we may see that three-person groups have a
strong tendency to walk in a V formation regardless of ρ. We
may also observe that while at higher density the probability
distribution maximum is found at a higher y, this effect is
counterbalanced by a higher probability of finding the group
in a 	 configuration, i.e., with negative y, and as a result
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FIG. 9. (Color online) Probability distributions for xg3 [Eq. (15)]
in different ρ ranges. The inset graph shows the position of the
mode as a function of ρ. A one-way ANOVA analysis shows that
the distributions in the figure are different in a statistically significant
way (p < 10−8).
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FIG. 10. (Color online) Probability distributions for yg3

[Eq. (16)] in different ρ ranges. The inset graph shows the position
of the mode as a function of ρ. A one-way ANOVA analysis shows
that the distributions in the figure are not different in a statistically
significant way (p ≈ 0.87). On the other hand, the overall empirical
distribution in ρ < 0.2 ped/m2 has an average value 140 ± 14 mm,
with a p < 10−8 value corresponding to the abreast configuration
yg3 = 0.

the average value of the distribution is not affected in a
significant way. The change in 2D structure of three-person
groups under different density conditions is shown by the
probability distributions of Fig. 11.

These results strongly suggest that also the V formation,
described in [14] as characteristic of the ρ → 0 group
behavior, is very stable under changes in crowd density, with
no significant variation with ρ in the average value of the
distribution. This result is somehow different from the one
described in [11], according to which three-person groups walk
abreast at low density, and gradually “close” themselves in a
more pronounced V formation at higher densities.

D. Left-right asymmetry

The probability distributions of Fig. 11, and in particular
the high-density one, suggest a left-right asymmetry in three-
person groups, possibly related to the tendency of Japanese
pedestrians to walk on the left side of corridors, while

FIG. 11. (Color online) 2D probability distributions for the po-
sition in a three-person group in a 2.5-m-wide square centered on
X. Left: 0 � ρ < 0.05; right: 0.1 � ρ < 0.15. The arrow shows the
direction of motion of the group V̂.
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FIG. 12. (Color online) Black circles: ρ dependence of yg2

[Eq. (14)]. Continuous lines provide standard error confidence
intervals. Red squares: ρ dependence of y3 − y1 for three-person
groups. Dashed lines provide standard error confidence intervals.

overtaking on the right [28]. We may thus expect that three-
person groups, by being slower than the rest of the crowd, find
themselves close to the corridor’s left limit. The pedestrian
on the left is thus mainly interacting with the wall, while
the one on the right interacts with the counterflow and with
overtaking faster pedestrians. It is not surprising, then, that
such an asymmetry arises. Figure 12 shows the ρ dependence
of y3 − y1, which has indeed a tendency to assume a negative
value, along with the ρ dependency of the extension in the
direction of walking for two-person groups yg2 [Eq. (14)],
which shows a similar tendency on an extended ρ range. While
this effect is not particularly strong,15 it could be due to the
interaction of many features of pedestrian behavior (group
behavior, avoidance and overtaking biases, interaction with
walls), and thus it may be extremely useful in the calibration
of the relative strengths of these components in a pedestrian
model.

V. CONCLUSIONS AND FUTURE WORK

We observed that, keeping other conditions fixed, the
abreast extension of two- and three-pedestrian walking social
groups decreases with density, with a law that, in the investi-
gated density range, may be considered in good approximation
as linear. We have also verified that pedestrians walk in a
V formation for all ρ values, and that the average distance
between the front and back pedestrians does not depend on
density. Furthermore, we have studied the ρ dependence of
the individual and group velocities, and we verified that,
regardless of density, groups are slower than individuals,
and three-person groups are slower than two-person ones;

15For yg2, the overall empirical distribution in ρ < 0.3 ped/m2

has an average value −8.6 ± 4.5 mm, with a p ≈ 0.05 value
corresponding to the abreast configuration yg2 = 0, while for y3 − y1

the overall empirical distribution in ρ < 0.2 ped/m2 has an average
value −25 ± 16 mm, with a p ≈ 0.13 value corresponding to the
abreast configuration y3 = y1.
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the difference between two- and three-person velocities is
considerably smaller than that between individuals and two-
person groups.

The main predictions of the model introduced in [14] for the
behavior of groups in the low-density regime, namely the V
formation structure of three-person groups and the decrease
in group velocity with the increase in group size, are not
disrupted by an increase in density. This result suggests that
the effect of density, i.e., the reduction in the group spatial
extension, could be modeled perturbing the potential of Eq. (1)
by adding a simple, ρ-dependent, effective potential, following
the approach sketched in [29].

A decrease in the spatial extension of groups is predicted
also by the model introduced in [11]. Nevertheless, this
model predicts that three-person groups walk in abreast
configurations under low-density conditions, while at higher
densities they assume a V formation, i.e., the extension of
the groups in the walking direction should increase at higher
density, a result that appears to be in contrast with that of Fig. 8.
Although in Appendix E we perform a quantitative comparison
between the empirical observations reported in this work and
the prediction of the model presented in [14], at least for
two-person groups and in the low-density range, a complete
understanding of the relation between models [11,14] (and
possibly other models of group behavior) and the empirical
results introduced in this work would require a systematic
simulation of the models under different density conditions, a
task that we are planning to perform in the future.

We may nevertheless propose an interpretation of the
empirical results based on the framework of our mathematical
model [14]. According to it, both the V formation and the
differences in velocity between groups of different size emerge
due to the group internal dynamics, namely to the load of
having to hold a conversation while walking toward a goal.
As shown in Fig. 3, at high density the difference between the
velocity of individuals, two-person, and three-person groups
becomes smaller. This suggests that at high density groups
are starting to “give up” their social interaction (since social
interaction is directly connected to slowing down), for example
in the case of three-person groups by assuming more often a
	 formation (see also Fig. 10), and in the case of two-person
groups by walking more often in a line (see Fig. 6). This
“switching” between a socially interacting mode and more
collision avoidance oriented configurations could be modeled
in a fashion similar to that proposed in [18].

It could be that at densities much higher than those
examined in this work, groups do not present any preferred
configuration, and pedestrians in groups limit themselves to
stay spatially close to each other, as it is usually assumed in the-
oretical studies of the effect of groups on evacuation dynamics
(see, for example, [30]). We may expect a crowd composed of
groups that try to preserve a spatial configuration (i.e., actively
interacting groups) to have a dynamics considerably different
from a crowd with groups that just try to be spatially close.
The transition between these two behaviors may thus be very
relevant in the study of issues related to crowd security and
event planning, and it deserves to be studied in greater detail.

We finally notice that the quantitative findings of this
work related to the group spatial extension in the ρ → 0
limit are different from those reported in [14], namely groups

being smaller in abreast extension, as discussed in detail in
Appendix E. This is probably due to the fact that the data
used for the current paper were collected in a relatively
narrow environment with an ongoing commercial activity,
i.e., far from the almost ideal, free walking conditions of the
environment in which the data used in [14] were collected (a
wide, straight corridor without shops). We are now planning
to collect new data to understand the effect of environmental
features (and possibly also of group composition) on group
dynamics.

Nevertheless, we believe that in this work we have shown
clearly the effects of local density (while keeping all other
variables fixed) on group behavior, and that our quantitative
empirical findings may be of great help in the development of
microscopic pedestrian models aimed to obtain reliable and
realistic crowd simulations.
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APPENDIX A: DEFINITION OF DENSITY

In thermodynamics or fluid dynamics, density is defined
by averaging over volumes small compared to the size of
the system, but large compared to the size of the molecules.
This approach cannot be trivially extended to microscopic
pedestrian studies, since using a volume (or better a surface)
considerably larger than pedestrian size would mean losing
most of the local information about how density influences
individual behavior. Different solutions, such as Gaussian
kernel methods [31] and Voronoi diagrams [32], have been
proposed, but there is still no universal agreement in the field
about how to define density.16

In this work, we have decided to use a very simple method.
We divided space in square cells of fixed area A = L2, and
we counted all pedestrians that were tracked on each cell in
a time interval T . Assuming T involved N observations, i.e.,
T = N�t , and that n pedestrians were observed in the area
during T , the density of the cell during the time interval T was
defined as

ρ = n

NA
. (A1)

We assume the density felt by a pedestrian located in
(continuous) position x and time t to be the density of the
corresponding discrete cell of size L and time interval of
length T . If at a given time pedestrians in the same group
are located on different cells, the density perceived by the
group is redefined as the average of the densities perceived by
the group members.

16The reader may refer to [32] for a comparison of different methods
in the measurement of straight corridor and T-junction fundamental
diagram relations.
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It is clear that it is impossible to obtain at the same time
a high temporal and spatial resolution. If, for example, we
use a value of L comparable to the pedestrian body size,
and a value of T comparable to the observation time �t , we
have either one or zero pedestrians on the cell. In this work,
we preferred to have a good spatial resolution, and we used
L = 0.5 m, T = 300 s.17 Furthermore, to compute density
we used only data points in which the pedestrian velocity
satisfied v > 0.5 m/s and from pedestrians that were tracked
in a stable way, i.e., for at least 8 s and with an average
vectorial velocity (total displacement over time) larger than
0.5 m/s. This choice, discussed in [24,27], was performed to
avoid counting false pedestrian detections, due to the change
of the structure of the environment, related to local commercial
activity, with respect to the tracking system background,18 and
it is based on a comparison between the overall velocity
and tracking time distributions in the tracking system output,
and the distributions for explicitly coded pedestrians. Obvi-
ously, by using this filter, we remove also actual standing
pedestrians. Nevertheless, we may expect standing pedestrians
not to be located in the middle of the corridor, where most of
the pedestrian flux happens, so that, since we limited ourselves
to the study of moving groups and used cells with linear size
small with respect to the size of the corridor, we may expect
the removal of standing pedestrians not to affect our results.
The validity of this assumption is tested by using a completely
different density definition in Appendix D.

APPENDIX B: AVERAGES AND CONFIDENCE
INTERVALS

Figures 3–5, 8, and 12 actually show the average over group
averages values for the corresponding observables. They are
computed in the following way. We define density slots of
width �ρ, i.e., with values ranging in

ρi − �ρ/2 � ρ < ρi + �ρ/2. (B1)

Then for each group (or individual, in the case of Fig. 3) we
average the value of the observable in each slot.19 Finally,
we average over all groups to obtain the data shown in
the figures.20 By considering different groups as statistically
independent, we define standard errors as σi/

√
ni , where σi

is the variance (of the average over groups) of the observable
in the slot i, and ni is the number of groups observed in the
slot. Only density slots that have data points from at least
100 groups were used to compute averages and confidence

17This choice gives us reasonable density values provided that the
usage pattern of the environment does not change in a time scale short
with respect to T .

18Our tracking system is provided with a semiautomatic background
correction, and, at the time of each experiment, an operator was
present to assess this problem. Nevertheless, considering also that the
tracking experiment consisted of more than 800 h, a time lapse could
pass between the background change and the operator action, causing
such false detections. Refer to [23] for further details.

19The same group may contribute to multiple slots.
20Each data point is shown for ρ = ρi , i.e., at the center of the

density slot.

0 0.1 0.2 0.3 0.4

ρ(ped/m
2
)

100

1000

10000

da
ta

 p
oi

nt
s 

(g
ro

up
s 

or
 in

di
vi

du
al

s)

FIG. 13. (Color online) Data points used for Figs. 3–5, 8, and 12.
Black circles: number of individual pedestrians (i.e., pedestrians not
explicitly coded as part of groups) for each density slot. Red squares:
number of two-person groups. Blue triangles: number of three-person
groups.

intervals. Linear fits are computed using just the data points
shown in the graphs, i.e., using only the averages over averages.
The corresponding determination coefficient values thus show
how well a linear law describes average data points, without
taking into consideration the deviations around the average
in each density slot. The same approach, i.e., performing
an average on data points from the same group in order to
obtain statistically independent samples, is used also in the
computation of p values in Figs. 6, 7, 9, 10, and Sec. IV D.
In all the p value computations, including those in which
the whole ρ average was compared to the abreast walking
condition, group averages have been performed on �ρ = 0.05
slots, and data from the same group in different slots were
considered as independent.

It is useful to know how many groups were used to compute
the data shown in the main text; this information is reported
in Fig. 13.21 Figure 14 shows the corresponding number of
overall data points (i.e., counting possibly more than one
observation for each group).

APPENDIX C: PROBABILITY DISTRIBUTIONS

The probability distribution graphs of Figs. 6, 7, 9–11, 17,
and 18 use larger density slots and are based on a computation,
for each slot and observable, of the distribution histogram,
which is then normalized in such a way to give an integral
equal to 1. Finally, in the case of 1D graphs, continuous curves
are obtained through a five-step, equal weight moving average.
Data points are shown at the center of the original histogram
slot. The number of data points used for each density slot may
be found in Fig. 15.

21Very small differences are actually present between the number
of data points used for Fig. 3 and those used for the other figures,
since for the computation of velocities we used different filtering
criteria to account for the need to remove false detections of individual
pedestrians.
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FIG. 14. (Color online) Red squares: number of two-person
group data points (total number of observations) for each density
slot. Blue triangles: number of three-person group data points (total
number of observations) for each density slot.

APPENDIX D: A DIFFERENT DENSITY DEFINITION

The specific form of the law for the group abreast extension
shrinking may depend on the definition of density. While
for the main text we used a method with a good spatial
resolution, here we may try to introduce a method with a
high time resolution. To obtain Fig. 16, we defined density
by counting all pedestrians present at a given time t in a
rectangular area centered on the group center X, with length 6
m in the direction of the group velocity V, and width 4 m in the
direction orthogonal to velocity, and then dividing by the area,
without time average or velocity filters.22 Figure 16 shows
the comparison of the ρ dependence of xg2 using the two

22The averaging area may include walls and other places not
accessible to pedestrians.
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FIG. 15. (Color online) Data points used for Figs. 6, 7, and 9–11.
Red squares: number of two-person group data points (number of
observations) for density slot. Blue triangles: number of three-person
group data points (number of observations) for density slot.
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FIG. 16. (Color online) Dependence of xg2 on density. Black
circles: ρ computed using cells with A = 0.25 m2, T = 300 s, and
data points with v > 0.5 m/s (linear fit in dashed red). Blue squares: ρ
computed using cells with A = 24 m2, T = 0.5 s, and all data points
(linear fit in dashed green, with α = 0.614 m, β = −0.234 m3/ped,
and R2 = 0.831).

definitions (average over group averages and corresponding
linear fits). We may notice the following:

(i) The high temporal resolution method, by not performing
a time average and counting all pedestrians, smears density
over a larger range.

(ii) Both methods show the group abreast extension as a
decreasing function of density.

(iii) For the high temporal resolution method, the linear fit
fails in describing the whole density range, since the convexity
of the function manifests itself.

APPENDIX E: QUANTITATIVE COMPARISON TO EQ. (1)

We have seen that some of the features implied by the
potential of Eq. (1) in the ρ → 0 limit and for a large
environment, namely Eqs. (3), (4), (5), and the V formation for
three-person groups, hold qualitatively also at higher densities
and for a relatively narrow corridor.

We may then wonder whether the potential of Eq. (1)
correctly describes in a quantitative way the behavior of the
pedestrians in the narrow corridor studied in this work, at least
in the low-density regime. To verify if this is the case, we repeat
the analysis performed in [14], which we recall briefly, inviting
the interested reader to refer to the original work. By assuming
that the effect of the environment on pedestrians in the group,
including collision avoidance toward pedestrians outside the
group, may be modeled as white noise,23 we can derive for a
pedestrian in a two-person group a Langevin equation in which
the conservative deterministic force is given by the negative
gradient of the potential of Eq. (1) with η = 0. As a result, we
expect to have, for the probability distribution of the position
relative to the group center r of a pedestrian in a two-person

23This is the essence of the low-density, large environment
condition.
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TABLE I. Model parameters obtained calibrating on all data in the
0 � ρ < 0.05 ped/m2 range by using Eq. (E3) for the ATC and [14]
data sets. r0 in m, T in m2/s2.

ε̃ r0 Cr/Cθ T

ATC 0.49 0.67 7.5 0.13
[14] 0.38 0.75 9.0 0.057

group,

pT (r) ∝ exp[−U 0(2r)/T ], (E1)

where the “temperature” T is determined by the intensity of
the stochastic term in the Langevin equation. By comparing pT

with the empirically observed probability distribution pE , or
better by minimizing the relative error weighted by the number
of observations per cell on the discrete grid on which pE is
defined as

ε ≡
∑

i,j∈cells

[pT (xi,yj ) − pE(xi,yj )]2

pE(xi,yj )
, (E2)

we may find the parameters r0 and Cr/Cθ in Eq. (1) and the
temperature T that better describe the data.

A straightforward application of this approach does not
allow us to take into account the influence of the environment.
To do that, we may nevertheless follow the method used by [8],
and calibrate on

ε̃ ≡
∑

i,j∈cells

[pT (xi,yj ) − p̃E(xi,yj )]2

p̃E(xi,yj )
, (E3)

where

p̃E(r) ≡ pE(r)/pNI(r), (E4)

and pNI(r) is the distribution of distances between noninter-
acting pedestrians (i.e., outside groups) walking in the same
direction,24 which we may calculate from the probability
distribution of pedestrian positions in the environment.25

Since pT (r) is calibrated on p̃E(r), we cannot compare
it directly to the empirical distribution pE(r), and thus we
may define a calibrated distributionpC(r) for which such a
comparison is possible, i.e.,

pC(r) ≡ pT (r) pNI(r). (E5)

By using data points in the 0 � ρ < 0.05 ped/m2 range, we
obtain, for the ATC and [14] data sets, the parameter values
shown in Table I. The increased value of the temperature is
easily explained by the fact that the ATC environment is less
regular (not straight, presence of shops) and thus more “noisy,”

24Since in a corridor the pedestrian spatial distributions depend on
the walking direction [28].

25In detail, we divide pedestrians out of groups according to their
walking direction in the corridor, and for each direction we compute,
on a sufficiently refined grid, the probability of finding a pedestrian
and the average velocity vector. We may use the velocity vector to
define a local frame, and compute pNI(r) by integrating on the whole
corridor distances between points randomly selected using the spatial
probability distribution.
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FIG. 17. (Color online) Comparison between the empirical
pE(r), theoretical pT (r), and calibrated pC(r) distributions in both
data sets. For the ATC set, the black dotted line and circles represent
pE(r), the black dashed line represents pT (r), and the black histogram
represents pC(r). For the [14] set, the orange (gray) dotted line and
squares represent pE(r), the orange dashed line represents pT (r), and
the orange histogram represents pC(r). All data refer to densities in
the 0 � ρ < 0.05 ped/m2 range.

in the sense of the Langevin equation introduced in [14].
We notice nevertheless that, despite our redefinition of the
probability distribution in Eq. (E4), the values of the other pa-
rameters are similar but different, and in particular pedestrians
walk closer in the narrow corridor. While pNI(r) accounts for
a reduced probability of noninteracting pedestrians to have a
large “abreast distance,” this effect is too weak to account
for the closer distance at which pedestrians in two-person
groups walk. This could be due to the fact that the effect
of the environment on groups is qualitatively different from
the effect on individuals, due to the peculiar spatial structure
and velocity of the former. This point should be investigated
numerically,26 a task that we leave for a future work.

The value of ε̃ [Eq. (E3)] was roughly 30% higher for the
ATC data set compared to the data set of [14], implying a
reduced capability of the model to describe the data.

Figure 17 shows a comparison, in both environments,
between pE(r), pT (r), and pC(r), where pE(r) is the empirical
probability distribution for the distance between pedestrians
in a two-person group, pT (r) is the theoretical distribution
derived by the distribution pT (r) [i.e., the one calibrated with
Eq. (E3)] and satisfies [using Eqs. (1) and (E1)]

pT (r) ∝ r exp[−R(r)/T ]
∫

dθ exp[−�0(θ )/T ]

∝ r exp[−R(r)/T ], (E6)

while pC(r) is computed by numerically integrating over pC(r)
in Eq. (E5).

26By running a microscopic simulation of a corridor with individuals
and groups, with realistic collision avoidance between pedestrians and
with walls.
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FIG. 18. (Color online) Comparison between the empirical
pE(θ ), theoretical pT (θ ), and calibrated pC(θ ) distributions in both
data sets. For the ATC set, the black dotted line and circles represent
pE(θ ), the black dashed line represents pT (θ ), and the black histogram
represents pC(θ ). For the [14] set, the orange (gray) dotted line and
squares represent pE(θ ), the orange dashed line represents pT (θ ), and
the orange histogram represents pC(θ ). All data refer to densities in
the 0 � ρ < 0.05 ped/m2 range, and they are limited to 0 � θ < π .

Figure 18 performs the same comparison between the θ

distributions, where

pT (θ ) ∝ exp[−�0(θ )/T ]. (E7)

The averages, standard deviations, and modes for the empirical
pE and calibrated pC distributions are shown in Table II.

We may notice that the pT and pC distributions are hardly
distinguishable, showing that the variation in pNI is too slow
with respect to the variation in pT to have a significant effect.
We also notice that the proposed potential still describes
qualitatively well the position and shape of the main bulk
of the r and θ distributions, although the position and shape

27This is probably due to the inability of Eq. (E4) to fully include
the effect of the environment.

TABLE II. Average value r and θ (with standard deviations) and
modes r, θ for the two-person empirical distributions pE(r) and
pE(θ ), and for the calibrated distributions pC(r) and pC(θ ) shown in
Figs. 17 and 18. r variables in m, θ in radians. The statistics for θ is
limited to 0 � θ < π .

ATC pE ATC pC [14] pE [14] pC

r 0.82 ± 0.32 0.74 ± 0.16 0.82 ± 0.19 0.79 ± 0.11
r ≈ 0.60 ≈ 0.67 ≈ 0.73 ≈ 0.76
θ 1.56 ± 0.57 1.57 ± 0.44 1.57 ± 0.34 1.57 ± 0.29
θ ≈ π/2 ≈ π/2 ≈ π/2 ≈ π/2

of the r peak are clearly identified less well for the ATC
data set.27 Regarding the tail of the r distribution, the model
underestimates the probability of finding pedestrians at a
distance considerably larger than r0, but its performance is not
very different between the two data sets. On the other hand,
the model fails in describing the relatively high probability of
having pedestrians walking in a line (θ ≈ 0,π ) in the ATC data
set, and thus the description of the θ distribution is not as good
as for the data set of [14].

As discussed in detail in [14], the proposed model, which is
a model for socially interacting pedestrians, assigns always
a very low probability to have pedestrians not moving in
an abreast configuration.28 In an environment with reduced
space, in order to perform collision avoidance, the pedestrians
may need to suspend their social interaction and switch to
a following behavior (walking in a line). The results of
Fig. 18 strongly suggest that this cannot be obtained simply by
summing the dynamics of Eq. (1) with a collision avoidance
force, and an explicit coding of the “walking in a line” behavior
is necessary.29 A similar approach has been described in [18].

28Unless different values of η in Eq. (1) are assigned to each
pedestrian. In particular, if one pedestrian has an η > 0 and the other
one η < 0, the latter will follow the former.

29For example, by changing the η parameters, as discussed in the
previous footnote.
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[7] T. Kretz, A. Grünebohm, M. Kaufman, F. Mazur, and M.

Schreckenberg, J. Stat. Mech.: Theor. Exp. (2006) P10001.
[8] I. Karamouzas, B. Skinner, and S. J. Guy, Phys. Rev. Lett. 113,

238701 (2014).

[9] D. Helbing and A. Johansson, Encycl. Complex. Syst. Sci. 16,
6476 (2009).
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